Prediction of in-hospital mortality with machine learning for COVID-19 patients treated with steroid and remdesivir

被引:22
|
作者
Kuno, Toshiki [1 ,2 ]
Sahashi, Yuki [3 ,4 ,5 ]
Kawahito, Shinpei [6 ]
Takahashi, Mai [1 ]
Iwagami, Masao [7 ]
Egorova, Natalia N. [8 ]
机构
[1] Icahn Sch Med Mt Sinai, Mt Sinai Beth Israel, Dept Med, New York, NY 10029 USA
[2] Montefiore Med Ctr, Albert Einstein Coll Med, Dept Med, Div Cardiol, New York, NY USA
[3] Gifu Univ, Grad Sch Med, Dept Cardiol, Gifu, Japan
[4] Yokohama City Univ, Grad Sch Data Sci, Dept Hlth Data Sci, Yokohama, Kanagawa, Japan
[5] Gifu Heart Ctr, Dept Cardiovasc Med, Gifu, Japan
[6] Tecotec Inc, Tokyo, Japan
[7] Univ Tsukuba, Dept Hlth Serv Res, Tsukuba, Ibaraki, Japan
[8] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY 10029 USA
关键词
COVID-19; machine learning; mortality; New York; remdesivir; steroid; CARDIAC INJURY;
D O I
10.1002/jmv.27393
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We aimed to create the prediction model of in-hospital mortality using machine learning methods for patients with coronavirus disease 2019 (COVID-19) treated with steroid and remdesivir. We reviewed 1571 hospitalized patients with laboratory confirmed COVID-19 from the Mount Sinai Health System treated with both steroids and remdesivir. The important variables associated with in-hospital mortality were identified using LASSO (least absolute shrinkage and selection operator) and SHAP (SHapley Additive exPlanations) through the light gradient boosting model (GBM). The data before February 17th, 2021 (N = 769) was randomly split into training and testing datasets; 80% versus 20%, respectively. Light GBM models were created with train data and area under the curves (AUCs) were calculated. Additionally, we calculated AUC with the data between February 17th, 2021 and March 30th, 2021 (N = 802). Of the 1571 patients admitted due to COVID-19, 331 (21.1%) died during hospitalization. Through LASSO and SHAP, we selected six important variables; age, hypertension, oxygen saturation, blood urea nitrogen, intensive care unit admission, and endotracheal intubation. AUCs using training and testing datasets derived from the data before February 17th, 2021 were 0.871/0.911. Additionally, the light GBM model has high predictability for the latest data (AUC: 0.881) (). A high-value prediction model was created to estimate in-hospital mortality for COVID-19 patients treated with steroid and remdesivir.
引用
收藏
页码:958 / 964
页数:7
相关论文
共 50 条
  • [1] The association of remdesivir and in-hospital outcomes for COVID-19 patients treated with steroids
    Kuno, Toshiki
    Miyamoto, Yoshihisa
    Iwagami, Masao
    Ishimaru, Miho
    Takahashi, Mai
    Egorova, Natalia N.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2021, 76 (10) : 2690 - 2696
  • [2] Machine learning for prediction of in-hospital mortality in COVID-19 patients: results from an Italian multicentre study
    Paris, Sara
    Inciardi, Riccardo Maria
    Specchia, Claudia
    Vezzoli, Marika
    Oriecuia, Chiara
    Lombardi, Carlo Mario
    Murillo, Natalia Herrera
    Pagnesi, Matteo
    Tomasoni, Daniela
    Ameri, Pietro
    Carubelli, Valentina
    Agostoni, Piergiuseppe
    Canale, Claudia
    Carugo, Stefano
    Danzi, Giambattista
    Di Pasquale, Mattia
    Sarullo, Filippo
    La Rovere, Maria Teresa
    Mortara, Andrea
    Piepoli, Massimo
    Porto, Italo
    Sinagra, Gianfranco
    Volterrani, Maurizio
    Gnecchi, Massimiliano
    Leonardi, Sergio
    Merlo, Marco
    Iorio, Annamaria
    Giovinazzo, Stefano
    Bellasi, Antonio
    Zaccone, Gregorio
    Camporotondo, Rita
    Catagnano, Francesco
    Dalla Vecchia, Laura
    Maccagni, Gloria
    Mapelli, Massimo
    Margonato, Davide
    Monzo, Luca
    Nuzzi, Vincenzo
    Pozzi, Andrea
    Provenzale, Giovanni
    Tedino, Chiara
    Guazzi, Marco
    Senni, Michele
    Metra, Marco
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2021, 23 (SUPPL G)
  • [3] Predicting in-Hospital Mortality of Patients with COVID-19 Using Machine Learning Techniques
    Tezza, Fabiana
    Lorenzoni, Giulia
    Azzolina, Danila
    Barbar, Sofia
    Leone, Lucia Anna Carmela
    Gregori, Dario
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (05):
  • [4] Prediction of in-hospital mortality rate in COVID-19 patients with diabetes mellitus using machine learning methods
    Khodabakhsh, Pooneh
    Asadnia, Ali
    Moghaddam, Alieyeh Sarabandi
    Khademi, Maryam
    Shakiba, Majid
    Maher, Ali
    Salehian, Elham
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (02) : 1177 - 1190
  • [5] Machine learning for prediction of in-hospital mortality in COVID-19 patients: results from an Italian multicentre study
    Paris, Sara
    Inciardi, Riccardo Maria
    Specchia, Claudia
    Vezzoli, Marika
    Oriecuia, Chiara
    Lombardi, Carlo Mario
    Murillo, Natalia Herrera
    Pagnesi, Matteo
    Tomasoni, Daniela
    Ameri, Pietro
    Carubelli, Valentina
    Agostoni, Piergiuseppe
    Canale, Claudia
    Carugo, Stefano
    Danzi, Giambattista
    Di Pasquale, Mattia
    Sarullo, Filippo
    La Rovere, Maria Teresa
    Mortara, Andrea
    Piepoli, Massimo
    Porto, Italo
    Sinagra, Gianfranco
    Volterrani, Maurizio
    Gnecchi, Massimiliano
    Leonardi, Sergio
    Merlo, Marco
    Iorio, Annamaria
    Giovinazzo, Stefano
    Bellasi, Antonio
    Zaccone, Gregorio
    Camporotondo, Rita
    Catagnano, Francesco
    Vecchia, Laura Dalla
    Maccagni, Gloria
    Mapelli, Massimo
    Margonato, Davide
    Monzo, Luca
    Nuzzi, Vincenzo
    Pozzi, Andrea
    Provenzale, Giovanni
    Tedino, Chiara
    Guazzi, Marco
    Senni, Michele
    Metra, Marco
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2021, 23 (0G) : G95 - +
  • [6] Prediction of in-hospital mortality rate in COVID-19 patients with diabetes mellitus using machine learning methods
    Pooneh Khodabakhsh
    Ali Asadnia
    Alieyeh Sarabandi Moghaddam
    Maryam Khademi
    Majid Shakiba
    Ali Maher
    Elham Salehian
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 1177 - 1190
  • [7] Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach
    Ramon, Antonio
    Bas, Andres
    Herrero, Santiago
    Blasco, Pilar
    Suarez, Miguel
    Mateo, Jorge
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (07)
  • [8] Development of a prediction score for in-hospital mortality in COVID-19 patients with acute kidney injury: a machine learning approach
    Ponce, Daniela
    Modelli de Andrade, Luis Gustavo
    Claure-Del Granado, Rolando
    Ferreiro-Fuentes, Alejandro
    Lombardi, Raul
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Development of a prediction score for in-hospital mortality in COVID-19 patients with acute kidney injury: a machine learning approach
    Daniela Ponce
    Luís Gustavo Modelli de Andrade
    Rolando Claure-Del Granado
    Alejandro Ferreiro-Fuentes
    Raul Lombardi
    Scientific Reports, 11
  • [10] Risk Factors Associated with In-Hospital Mortality in Iranian Patients with COVID-19: Application of Machine Learning
    Shafiekhani, Sadjad
    Rafiei, Sima
    Abdollahzade, Sina
    Souri, Saber
    Moomeni, Zeinab
    POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING, 2022, 28 (01): : 19 - 29