Anti-periodic solutions to a class of non-monotone evolution equations

被引:0
|
作者
Aizicovici, S [1 ]
Reich, S
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
anti-periodic solution; boundary value problem; subdifferential;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of solutions to an anti-periodic non-monotone boundary value problem. Our approach relies on a combination of monotonicity and compactness methods.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 50 条
  • [1] Solutions and Periodic Solutions for Nonlinear Evolution Equations with Non-Monotone Perturbations
    Avgerinos, E. P.
    Papageorgiou, N. S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (04): : 859 - 875
  • [2] Anti-periodic solutions for evolution equations associated with maximal monotone mappings
    Chen, Yuqing
    Nieto, Juan J.
    O'Regan, Donal
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 302 - 307
  • [3] Anti-periodic solutions for evolution equations associated with monotone type mappings
    Chen, Yuqing
    O'Regan, Donal
    Agarwal, Ravi P.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (11) : 1320 - 1325
  • [4] Anti-periodic solutions for evolution equations with mappings in the class (S+)
    Chen, YQ
    Cho, YJ
    O'Regan, D
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) : 356 - 362
  • [5] Anti-periodic solutions for semilinear evolution equations
    Chen, YQ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) : 337 - 348
  • [6] Anti-periodic solutions for semilinear evolution equations
    Chen, YQ
    Wang, XD
    Xu, HX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (02) : 627 - 636
  • [7] Anti-periodic solutions for nonlinear evolution equations
    Yi Cheng
    Fuzhong Cong
    Hongtu Hua
    Advances in Difference Equations, 2012
  • [8] Anti-periodic solutions for nonlinear evolution equations
    Cheng, Yi
    Cong, Fuzhong
    Hua, Hongtu
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [9] Anti-periodic solutions to nonlinear evolution equations
    Liu Zhenhai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) : 2026 - 2033
  • [10] Periodic solutions of nonlinear wave equations with non-monotone forcing terms
    Berti, Massimiliano
    Biasco, Luca
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2005, 16 (02): : 117 - 124