Formulation of moment equations for rarefied gases within two frameworks of non-equilibrium thermodynamics: RET and GENERIC

被引:12
|
作者
Oettinger, Hans Christian [1 ]
Struchtrup, Henning [2 ]
Torrilhon, Manuel [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Mat, HCP F 47-2, CH-8093 Zurich, Switzerland
[2] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 2Y2, Canada
[3] Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
rational extended thermodynamics; GENERIC; Boltzmann equation; moment equations; closure; Onsager-Casimir symmetry; REGULARIZED 13-MOMENT EQUATIONS; IRREVERSIBLE-PROCESSES; COMPLEX FLUIDS; RECIPROCAL RELATIONS; BRACKET FORMULATION; SHOCK-TUBE; ENTROPY; DYNAMICS; FORMALISMS; DERIVATION;
D O I
10.1098/rsta.2019.0174
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we make a further step in bringing together different approaches to non-equilibrium thermodynamics. The structure of the moment hierarchy derived from the Boltzmann equation is at the heart of rational extended thermodynamics (RET, developed by Ingo Muller and Tommaso Ruggeri). Whereas the full moment hierarchy has the structure expressed in the general equation for the nonequilibrium reversible-irreversible coup- ling (GENERIC), the Poisson bracket structure of reversible dynamics postulated in that approach is a major obstacle for truncating moment hierarchies, which seems to work only in exceptional cases (most importantly, for the five moments associated with conservation laws). The practical importance of truncated moment hierarchies in rarefied gas dynamics and microfluidics motivates us to develop a new strategy for establishing the full GENERIC structure of truncated moment equations, based on non-entropy-producing irreversible processes associated with Casimir symmetry. Detailed results are given for the special case of 10 moments. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
引用
收藏
页数:17
相关论文
共 46 条
  • [1] Non-equilibrium thermodynamics and kinetic theory of rarefied gases
    Zhdanov, VM
    Roldughin, VI
    [J]. USPEKHI FIZICHESKIKH NAUK, 1998, 168 (04): : 407 - 438
  • [2] On the Non-Equilibrium Thermodynamics of Rarefied Gases: Relationships between the Chapman-Enskog and Moment Methods
    Roldughin, Vjacheslav I.
    Zhdanov, Vladimir M.
    [J]. 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 83 - 90
  • [3] Moment Method and Non-Equilibrium Thermodynamics of Rarefied Gas Mixture
    Zhdanov, Vladimir M.
    Roldughin, Vjacheslav I.
    [J]. 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 43 - 52
  • [4] Non-equilibrium theories of rarefied gases: internal variables and extended thermodynamics
    Kovacs, Robert
    Madjarevic, Damir
    Simic, Srboljub
    Van, Peter
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (02) : 307 - 325
  • [5] Non-equilibrium theories of rarefied gases: internal variables and extended thermodynamics
    Róbert Kovács
    Damir Madjarević
    Srboljub Simić
    Péter Ván
    [J]. Continuum Mechanics and Thermodynamics, 2021, 33 : 307 - 325
  • [6] Non-equilibrium thermodynamics of boundary conditions for rarefied gases and related phenomena
    Roldughin, VI
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1996, 65 : 1 - 35
  • [7] Non-equilibrium thermodynamics of weakly rarefied gas mixture
    Zhdanov, VM
    Roldugin, VI
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1996, 109 (04): : 1267 - 1287
  • [8] THERMODYNAMICS OF IDEAL MULTIATOMIC GASES IN LOCAL NON-EQUILIBRIUM
    MADEJSKI, J
    [J]. ARCHIWUM MECHANIKI STOSOWANEJ, 1968, 20 (03): : 295 - &
  • [9] A simple formulation of non-equilibrium thermodynamics of a polarizable fluid
    Fujitani, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (06) : 1556 - 1564
  • [10] Covariant formulation of non-equilibrium thermodynamics in General Relativity
    Espinosa-Portales, Llorenc
    Garcia-Bellido, Juan
    [J]. PHYSICS OF THE DARK UNIVERSE, 2021, 34