Kurtosis of the logistic-exponential survival distribution

被引:6
|
作者
van Staden, Paul J. [1 ]
King, Robert A. R. [1 ,2 ]
机构
[1] Univ Pretoria, Dept Stat, ZA-0002 Pretoria, Gauteng, South Africa
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW, Australia
关键词
L-moments; Quantile function; Ratio-of-spread functions; Skewness-invariant measure of kurtosis; Spread-spread plot; SKEWNESS; VARIABLES;
D O I
10.1080/03610926.2014.972566
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, the kurtosis of the logistic-exponential distribution is analyzed. All the moments of this survival distribution are finite, but do not possess closed-form expressions. The standardized fourth central moment, known as Pearson's coefficient of kurtosis and often used to describe the kurtosis of a distribution, can thus also not be expressed in closed form for the logistic-exponential distribution. Alternative kurtosis measures are therefore considered, specifically quantile-based measures and the L-kurtosis ratio. It is shown that these kurtosis measures of the logistic-exponential distribution are invariant to the values of the distribution's single shape parameter and hence skewness invariant.
引用
下载
收藏
页码:6891 / 6899
页数:9
相关论文
共 50 条
  • [1] The logistic-exponential survival distribution
    Lan, Yingjie
    Leemis, Lawrence M.
    NAVAL RESEARCH LOGISTICS, 2008, 55 (03) : 252 - 264
  • [2] The Marshall-Olkin logistic-exponential distribution
    Mansoor, M.
    Tahir, M. H.
    Cordeiro, Gauss M.
    Provost, Serge B.
    Alzaatreh, Ayman
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (02) : 220 - 234
  • [3] Transmuted Logistic-Exponential Distribution for Modelling Lifetime Data
    Adesegun, Ogunsola I. .
    Abayomi, Dawodu G. .
    Taiwo, Soyinka A. .
    Ademola, Osinuga I. .
    Omotola, Adetona B. .
    THAILAND STATISTICIAN, 2023, 21 (04): : 943 - 960
  • [4] Reliability Test Plan Based on Logistic-Exponential Distribution and Its Application
    Yadav, Abhimanyu Singh
    Saha, Mahendra
    Shukla, Shivanshi
    Tripathi, Harsh
    Dey, Rajashree
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2021, 14 (02): : 695 - 724
  • [5] Classical Inference of a New PCI CNpmkc for Logistic-Exponential Process Distribution
    Saha, Mahendra
    Tripathi, Harsh
    Dey, Sanku
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2024, 31 (03)
  • [6] Logistic-exponential model for chemiluminescence kinetics
    Kochel, B
    TALANTA, 2003, 60 (2-3) : 377 - 393
  • [7] Estimation and confidence intervals of CNp(u, v) for logistic-exponential distribution with application
    Dey, Sanku
    Saha, Mahendra
    Anis, M. Z.
    Maiti, Sudhansu S.
    Kumar, Sumit
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (SUPPL 1) : S431 - S446
  • [8] Estimation and Confidence Intervals of a New PCI CNpmc for Logistic-Exponential Process Distribution
    Alotaibi, Refah
    Dey, Sanku
    Saha, Mahendra
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [9] The Marshall-Olkin logistic-exponential distribution (vol 0, pg 1, 2017)
    Mansoor, M.
    Tahir, M. H.
    Cordeiro, Gauss M.
    Alizadeh, Morad
    Provost, Serge B.
    Alzaatreh, Ayman
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (02) : 434 - 434
  • [10] Two-Parameter Logistic-Exponential Distribution: Some New Properties and Estimation Methods
    Ali S.
    Dey S.
    Tahir M.H.
    Mansoor M.
    Ali, Sajid (sajidali.qau@hotmail.com), 1600, Taylor and Francis Ltd. (39): : 270 - 298