A machine learning approach for the prediction of pulmonary hypertension

被引:44
|
作者
Leha, Andreas [1 ]
Hellenkamp, Kristian [2 ]
Unsoeld, Bernhard [3 ]
Mushemi-Blake, Sitali [4 ]
Shah, Ajay M. [4 ]
Hasenfuss, Gerd [2 ,5 ]
Seidler, Tim [2 ,5 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Gottingen, Germany
[2] Univ Med Ctr Gottingen, Clin Cardiol & Pulmonol, Heart Ctr, Gottingen, Germany
[3] Univ Regensburg, Dept Internal Med 2, Regensburg, Germany
[4] Kings Coll London, Sch Cardiovasc Med & Sci, British Heart Fdn Ctr, London, England
[5] DZHK German Ctr Cardiovasc Res, Partner Site Gottingen, Gottingen, Germany
来源
PLOS ONE | 2019年 / 14卷 / 10期
关键词
ARTERY PRESSURE; HEART;
D O I
10.1371/journal.pone.0224453
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Machine learning (ML) is a powerful tool for identifying and structuring several informative variables for predictive tasks. Here, we investigated how ML algorithms may assist in echocardiographic pulmonary hypertension (PH) prediction, where current guidelines recommend integrating several echocardiographic parameters. Methods In our database of 90 patients with invasively determined pulmonary artery pressure (PAP) with corresponding echocardiographic estimations of PAP obtained within 24 hours, we trained and applied five ML algorithms (random forest of classification trees, random forest of regression trees, lasso penalized logistic regression, boosted classification trees, support vector machines) using a 10 times 3-fold cross-validation (CV) scheme. Results ML algorithms achieved high prediction accuracies: support vector machines (AUC 0.83; 95% CI 0.73-0.93), boosted classification trees (AUC 0.80; 95% CI 0.68-0.92), lasso penalized logistic regression (AUC 0.78; 95% CI 0.67-0.89), random forest of classification trees (AUC 0.85; 95% CI 0.75-0.95), random forest of regression trees (AUC 0.87; 95% CI 0.780.96). In contrast to the best of several conventional formulae (by Aduen et al.), this ML algorithm is based on several echocardiographic signs and feature selection, with estimated right atrial pressure (RAP) being of minor importance. Conclusions Using ML, we were able to predict pulmonary hypertension based on a broader set of echocardiographic data with little reliance on estimated RAP compared to an existing formula with non-inferior performance. With the conceptual advantages of a broader and unbiased selection and weighting of data our ML approach is suited for high level assistance in PH prediction.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A MACHINE LEARNING APPROACH FOR THE PREDICTION OF PULMONARY HYPERTENSION
    Seidler, Tim
    Hellenkamp, Kristian
    Unsoeld, Bernhard
    Mushemi-Blake, Sitali
    Shah, Ajay
    Hasenfuss, Gerd
    Leha, Andreas
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1589 - 1589
  • [2] A hybrid machine learning approach for hypertension risk prediction
    Fang, Min
    Chen, Yingru
    Xue, Rui
    Wang, Huihui
    Chakraborty, Nilesh
    Su, Ting
    Dai, Yuyan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14487 - 14497
  • [3] A hybrid machine learning approach for hypertension risk prediction
    Min Fang
    Yingru Chen
    Rui Xue
    Huihui Wang
    Nilesh Chakraborty
    Ting Su
    Yuyan Dai
    [J]. Neural Computing and Applications, 2023, 35 : 14487 - 14497
  • [4] Machine learning and pulmonary hypertension
    Soriente, Lucia
    Cerulo, Luigi
    Mercurio, Giovanna
    Iuliano, Giuseppe
    Mancini, Francesco Paolo
    [J]. EUROPEAN HEART JOURNAL SUPPLEMENTS, 2021, 23 (0G) : G62 - +
  • [5] Machine learning and pulmonary hypertension
    Soriente, Lucia
    Cerulo, Luigi
    Mercurio, Giovanna
    Iuliano, Giuseppe
    Mancini, Francesco Paolo
    [J]. EUROPEAN HEART JOURNAL SUPPLEMENTS, 2021, 23 (SUPPL G)
  • [6] Machine Learning, Pulmonary Hypertension ...
    Erol, Cetin
    [J]. ANATOLIAN JOURNAL OF CARDIOLOGY, 2023, 27 (11): : 615 - 615
  • [7] MACHINE LEARNING FOR THE DIAGNOSIS OF PULMONARY HYPERTENSION
    Zhu, Fubao
    Xu, Dongxu
    Liu, Yanyun
    Lou, Kun
    He, Zhuo
    Zhang, Hao
    Sheng, Yanhui
    Yang, Rong
    Li, Xinli
    Kong, Xiangqing
    Zhang, Haifeng
    Zhou, Weihua
    [J]. KARDIOLOGIYA, 2020, 60 (06) : 96 - 101
  • [8] A Machine Learning Approach to Prediction of Exacerbations of Chronic Obstructive Pulmonary Disease
    Angel Fernandez-Granero, Miguel
    Sanchez-Morillo, Daniel
    Angel Lopez-Gordo, Miguel
    Leon, Antonio
    [J]. ARTIFICIAL COMPUTATION IN BIOLOGY AND MEDICINE, PT I (IWINAC 2015), 2015, 9107 : 305 - 311
  • [9] A Novel Machine Learning Approach for Prediction of Chronic Obstructive Pulmonary Disease
    Chopde, Nitin R.
    Miri, Rohit
    [J]. BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (15): : 285 - 291
  • [10] Machine Learning for Diagnosis of Pulmonary Hypertension by Echocardiography
    Anand, Vidhu
    Weston, Alexander D.
    Scott, Christopher G.
    Kane, Garvan C.
    Pellikka, Patricia A.
    Carter, Rickey E.
    [J]. MAYO CLINIC PROCEEDINGS, 2024, 99 (02) : 260 - 270