Uranium recovery and manganese removal from acid mine drainage

被引:4
|
作者
Ladeira, A. C. Q.
Goncalves, C. R.
机构
来源
WATER POLLUTION IX | 2008年 / 111卷
关键词
manganese; uranium; adsorption; removal; acid mine;
D O I
10.2495/WP080451
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
This work is aimed at the selection of an appropriate adsorbent for uranium and manganese present in acid mine water drainage. The pH of the acid water is around 2.7, the uranium concentration is in a range of 9-15mg/L, the manganese concentration approximately 170mg/L and the sulphate concentration is near 2000mg/L. The uranium in this solution, where sulphate is present in high levels, is basically in the form of UO2(SO4)(3)(-4) and the manganese is in the form of Mn+2. The removal of these elements has been studied using activated carbons, gibbsite, zeolite, apatite and biological adsorbent. Among all adsorbents tested, the biological material was the one which presented the best performance taking into account the necessity of removing Mn and U simultaneously. The maximum adsorption capacity varied from 10 to 14 mg U.g(-1) and 83 to 123 mg Mn.g(-1). The results, obtained by column experiments, showed that the sulphate had a deleterious effect on the uranium recovery by the biological adsorbent. Mn removal was increased with the increase of pH from 2.6 to 7.0. Adsorption of these elements by activated carbons, gibbsite, zeolite and apatite was lower if compared to the biological material.
引用
收藏
页码:465 / 474
页数:10
相关论文
共 50 条
  • [1] BATCH REMOVAL OF MANGANESE FROM ACID MINE DRAINAGE USING BONE CHAR
    Sicupira, D. C.
    Tolentino Silva, T.
    Leao, V. A.
    Mansur, M. B.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (01) : 195 - 204
  • [2] Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method
    Kim, Bum-Jun
    Ji, Won-Hyun
    Ko, Myoung-Soo
    ECONOMIC AND ENVIRONMENTAL GEOLOGY, 2020, 53 (06): : 687 - 694
  • [3] Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria
    Hou, Dongmei
    Zhang, Pan
    Wei, Dongning
    Zhang, Jiachao
    Yan, Binghua
    Cao, Linying
    Zhou, Yaoyu
    Luo, Lin
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 396
  • [4] Recovery/removal of metallic elements from acid mine drainage using ozone
    Sato, M
    Robbins, EI
    ICARD 2000, VOLS I AND II, PROCEEDINGS, 2000, : 1095 - 1100
  • [5] Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors
    Hallberg, KB
    Johnson, DB
    SCIENCE OF THE TOTAL ENVIRONMENT, 2005, 338 (1-2) : 115 - 124
  • [6] SULPHATES REMOVAL FROM ACID MINE DRAINAGE
    Macingova, Eva
    Luptakova, Alena
    Schutz, Tomas
    12TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, SGEM 2012, VOL. V, 2012, : 825 - 831
  • [7] Sulphates Removal from Acid Mine Drainage
    Luptakova, Alena
    Macingova, Eva
    Kotulicova, Ingrida
    Rudzanova, Dominika
    WORLD MULTIDISCIPLINARY EARTH SCIENCES SYMPOSIUM (WMESS 2016), PTS 1-4, 2016, 44
  • [8] The removal of iron from acid mine drainage
    Sandhu, R
    Butler, J
    Morinello, E
    Bartells, J
    Paley, M
    Gatrone, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U884 - U884
  • [9] Recovery of Metals from Acid Mine Drainage
    Macingova, Eva
    Luptakova, Alena
    BOSICON 2012: 3RD INTERNATIONAL CONFERENCE ON CONTAMINATED SITES REMEDIATION, 2012, 28 : 109 - 114
  • [10] A review of the implications and challenges of manganese removal from mine drainage
    Neculita, Carmen Mihaela
    Rosa, Eric
    CHEMOSPHERE, 2019, 214 : 491 - 510