共 50 条
Alda-1 Attenuates Lung Ischemia-Reperfusion Injury by Reducing 4-Hydroxy-2-Nonenal in Alveolar Epithelial Cells
被引:45
|作者:
Ding, Jie
[1
,2
,3
]
Zhang, Quanyi
[1
,2
,3
]
Luo, Qipeng
[1
,2
,3
]
Ying, Yongquan
[1
,2
,4
,5
]
Liu, Yiwei
[1
,2
,4
,5
]
Li, Yinan
[1
,2
,3
]
Wei, Wei
[1
,2
,4
,5
]
Yan, Fuxia
[1
,2
,3
]
Zhang, Hao
[1
,2
,4
,5
]
机构:
[1] Chinese Acad Med Sci, Natl Ctr Cardiovasc Dis, Fuwai Hosp, State Key Lab Cardiovasc Dis, Beijing 100730, Peoples R China
[2] Peking Union Med Coll, Beijing 100021, Peoples R China
[3] Chinese Acad Med Sci, Natl Ctr Cardiovasc Dis, Fuwai Hosp, Dept Anesthesiol, Beijing 100730, Peoples R China
[4] Chinese Acad Med Sci, Natl Ctr Cardiovasc Dis, Fuwai Hosp, Dept Surg, Beijing 100730, Peoples R China
[5] Chinese Acad Med Sci, Natl Ctr Cardiovasc Dis, Fuwai Hosp, Ctr Pediat Cardiac Surg, Beijing 100730, Peoples R China
关键词:
4-hydroxy-2-nonenal;
alda-1;
epithelial cells;
lung injury;
pulmonary alveoli;
reperfusion injury;
MITOCHONDRIAL ALDEHYDE DEHYDROGENASE;
MICROVASCULAR ENDOTHELIAL-CELLS;
CARDIOPULMONARY BYPASS;
LIPID-PEROXIDATION;
ARTERY PERFUSION;
BLOOD-FLOW;
EXPRESSION;
APOPTOSIS;
RAT;
CARDIOPROTECTION;
D O I:
10.1097/CCM.0000000000001563
中图分类号:
R4 [临床医学];
学科分类号:
1002 ;
100602 ;
摘要:
Objectives: Excessive oxidative stress is a main cause of lung ischemia-reperfusion injury, which often results in respiratory insufficiency after open-heart surgery for a cardiopulmonary bypass. Previous studies demonstrate that the activation of aldehyde dehydrogenase-2 could significantly reduce the oxidative stress mediated by toxic aldehydes and attenuate cardiac and cerebral ischemia-reperfusion injury. However, both the involvement of aldehydes and the protective effect of the aldehyde dehydrogenase-2 agonist, Alda-1, in lung ischemia-reperfusion injury remain unknown. Design: Prospective laboratory and animal investigation were conducted. Setting: State Key Laboratory of Cardiovascular Disease. Subjects: Primary human pulmonary alveolar epithelial cells, human pulmonary microvascular endothelial cells, and Sprague-Dawley rats. Interventions: A hypoxia/reoxygenation cell-culture model of human pulmonary alveolar epithelial cell, human pulmonary microvascular endothelial cell, and an isolated-perfused lung model were applied to mimic lung ischemia-reperfusion injury. We evaluated the effects of Alda-1 on aldehyde dehydrogenase-2 quantity and activity, on aldehyde levels and pulmonary protection. Measurements and Main Results: We have demonstrated that ischemia-reperfusion-induced pulmonary injury concomitantly induced aldehydes accumulation in human pulmonary alveolar epithelial cells and lung tissues, but not in human pulmonary microvascular endothelial cells. Moreover, Alda-1 pretreatment significantly elevated aldehyde dehydrogenase-2 activity, increased surfactant-associated protein C, and attenuated elevation of 4-hydroxy-2-nonenal, apoptosis, intercellular adhesion molecule-1, inflammatory response, and the permeability of pulmonary alveolar capillary barrier, thus alleviated injury. Conclusions: Our study indicates that the accumulation of 4-hydroxy-2-nonenal plays an important role in lung ischemia-reperfusion injury. Alda-1 pretreatment can attenuate lung ischemia-reperfusion injury, possibly through the activation of aldehyde dehydrogenase-2, which in turn removes 4-hydroxy-2-nonenal in human pulmonary alveolar epithelial cells. Alda-1 pretreatment has clinical implications to protect lungs during cardiopulmonary bypass.
引用
收藏
页码:E544 / E552
页数:9
相关论文