Maximal Robust Feasible Sets for Constrained Linear Systems Controlled by Piecewise Affine Feedback Laws

被引:1
|
作者
Scibilia, F. [1 ]
Bitmead, R. R. [2 ]
Olaru, S. [3 ]
Hovd, M. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7491 Trondheim, Norway
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] SUPELEC, Dept Automat Control, F-91192 Gif Sur Yvette, France
关键词
D O I
10.1109/ICCA.2009.5410556
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For time-invariant linear systems subject to linear constraints, Model Predictive Control techniques provide piecewise affine feedback control laws within a polyhedral set of initial states called the feasible set. In the presence of model mismatch, when the controller designed using the nominal model is applied to the real plant, the feasible set may lose its invariance property, and this means violation of constraints. Moreover, since the controller is designed only over the feasible set, there is the technical problem that the control action is undefined if the state moves outside of the feasible set. In this paper we propose a tool to analyze how uncertainty in the real plant will affect the piecewise affine control law computed using the nominal model. Given the linear system describing the plant and the piecewise affine control law, the algorithm presented considers a polytopic model uncertainty defined by the user and constructs the maximal robust feasible set, i.e. the largest subset of the feasible set which is guaranteed to be feasible for any model in the family of models described by the polytopic uncertainty.
引用
收藏
页码:104 / +
页数:2
相关论文
共 50 条
  • [1] Constrained linear systems with disturbances: Enlargement of their maximal invariant sets by nonlinear feedback
    Ong, Chong-Jin
    Gilbert, Elmer G.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 158 - +
  • [2] On the computation of robust control invariant sets for piecewise affine systems
    Alamo, T.
    Fiacchini, M.
    Cepedas, A.
    Limons, D.
    Bravo, J. M.
    Camacho, E. F.
    [J]. ASSESSMENT AND FUTURE DIRECTIONS OF NONLINEAR MODEL PREDICTIVE CONTROL, 2007, 358 : 131 - +
  • [3] Stabilizing low complexity feedback control of constrained piecewise affine systems
    Grieder, P
    Kvasnica, M
    Baotic, M
    Morati, M
    [J]. AUTOMATICA, 2005, 41 (10) : 1683 - 1694
  • [4] Robust receding horizon control for piecewise linear systems based on constrained positively invariant sets
    Mukai, M
    Azuma, T
    Fujita, M
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2348 - 2353
  • [5] On maximal robust positively invariant sets in constrained nonlinear systems
    Esterhuizen, Willem
    Aschenbruck, Tim
    Streif, Stefan
    [J]. AUTOMATICA, 2020, 119
  • [6] OPTIMAL CONTROL OF PIECEWISE AFFINE SYSTEMS WITH PIECEWISE AFFINE STATE FEEDBACK
    Wu, Changzhi
    Teo, Kok Lay
    Rehbock, Volker
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (04) : 737 - 747
  • [7] Robust region elimination for piecewise affine control laws
    Maddalena, Emilio Tanowe
    Harrop Galvao, Roberto Kawakami
    Magalhaes Afonso, Rubens Junqueira
    [J]. AUTOMATICA, 2019, 99 : 333 - 337
  • [8] Output Feedback Constrained Regulation of Linear Systems via Controlled-Invariant Sets
    Almeida, Tiago A.
    Dorea, Carlos E. T.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3378 - 3385
  • [9] Piecewise affine observer-based robust controllers for constrained nonlinear systems
    Imsland, L
    Slupphaug, O
    Foss, BA
    [J]. MODELING IDENTIFICATION AND CONTROL, 2001, 22 (04) : 211 - 225
  • [10] Reference governor for constrained piecewise affine systems
    Borrelli, Francesco
    Falcone, Paolo
    Pekar, Jaroslav
    Stewart, Greg
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (08) : 1229 - 1237