Microstructure and Mechanical Properties of Carbon Nanohorns Reinforced Aluminum Composites Prepared by Ball Milling and Spark Plasma Sintering

被引:3
|
作者
Jagannatham, M. [1 ]
Sankaran, S. [1 ]
Haridoss, Prathap [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Chennai 36, Tamil Nadu, India
关键词
aluminum; ball milling; compression strength; electron; microscopy; nanohorns; sintering; POWDER-METALLURGY; NANOTUBES; BEHAVIOR; SINGLE; STRENGTH;
D O I
10.1007/s11665-019-04534-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Commercial purity aluminum was reinforced with different percentages of carbon nanohorns (CNH) using ball milling (1 h) followed by spark plasma sintering (SPS) at 550 degrees C for 5 min under 50 MPa pressure with heating rate 100 degrees C/min. The microstructure, hardness and compression properties of the spark-plasma-sintered carbon-nanohorns-reinforced aluminum (Al-CNH) composites were evaluated. Transmission electron microscopy revealed a uniform distribution of 0.3% CNH in Al, but above 0.3% CNH, agglomeration occurred. The compression strength of Al-0.3%CNH composites increased by 44% compared to the milled Al sample without CNH.
引用
收藏
页码:582 / 592
页数:11
相关论文
共 50 条
  • [1] Microstructure and Mechanical Properties of Carbon Nanohorns Reinforced Aluminum Composites Prepared by Ball Milling and Spark Plasma Sintering
    M. Jagannatham
    S. Sankaran
    Prathap Haridoss
    Journal of Materials Engineering and Performance, 2020, 29 : 582 - 592
  • [2] Microstructure and mechanical properties of TiC reinforced TZM composites prepared by spark plasma sintering
    Wei, Yanni
    Chen, Yu
    Liang, Shuhua
    Zhu, Linghao
    Li, Yaru
    Jia, Lei
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 116
  • [3] Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering
    Li, Xiuhui
    Yan, Shaojiu
    Chen, Xiang
    Hong, Qihu
    Wang, Nan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834 (834)
  • [4] Microstructure, mechanical properties and arc erosion behavior of CuW composites prepared by high energy ball milling and spark plasma sintering
    Wang, Xu
    Duan, Junbiao
    Song, Kexing
    Xing, Jiandong
    Feng, Jiang
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 119
  • [5] Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior
    Lahiri, Debrupa
    Hadjikhani, Ali
    Zhang, Cheng
    Xing, Tan
    Li, Lu Hua
    Chen, Ying
    Agarwal, Arvind
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 574 : 149 - 156
  • [6] Microstructure and properties of graphene/aluminum composites prepared via spark plasma sintering
    Shen C.
    Zhu D.-Z.
    Luo M.-Q.
    Chen W.-S.
    Li H.
    Wang C.-Y.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2019, 29 (04): : 709 - 716
  • [7] Microstructure and Magnetic Properties of Fe/ZrSiO4 Composites Prepared by Mechanical Milling and Spark Plasma Sintering
    Hu, Wentao
    Fan, Xi'an
    Luo, Zigui
    Luo, Fan
    Li, Guangqiang
    Li, Yawei
    Wang, Jian
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (12)
  • [8] Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology
    Muhammad, Wan Nur Azrina Wan
    Sajuri, Zainuddin
    Mutoh, Yoshiharu
    Miyashita, Yukio
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (20) : 6021 - 6029
  • [9] Microstructure and mechanical properties of a ZnS-SiO2 composite prepared by ball-milling and spark plasma sintering
    Kim, Gil-Su
    Shin, Dae Hoon
    Seo, Young Ik
    Do Kim, Young
    MATERIALS CHARACTERIZATION, 2008, 59 (09) : 1201 - 1205
  • [10] The microstructure and mechanical properties of TiC-reinforced W-matrix composites prepared by spark plasma sintering
    Wei, Yanni
    Chen, Yu
    Guo, Bingbing
    Zhu, Linghao
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 112