Some convergence results for p-harmonic functions on metric measure spaces

被引:30
|
作者
Shanmugalingam, N [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
D O I
10.1112/S0024611503014151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:226 / 246
页数:21
相关论文
共 50 条
  • [1] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Jasun Gong
    Piotr Hajłasz
    Potential Analysis, 2013, 38 : 79 - 93
  • [2] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Gong, Jasun
    Hajlasz, Piotr
    POTENTIAL ANALYSIS, 2013, 38 (01) : 79 - 93
  • [3] Classification of metric measure spaces and their ends using p-harmonic functions
    Bjorn, Anders
    Bjorn, Jana
    Shanmugalingam, Nageswari
    ANNALES FENNICI MATHEMATICI, 2022, 47 (02): : 1025 - 1052
  • [4] Weighted p-harmonic functions and rigidity of smooth metric measure spaces
    Nguyen Thac Dung
    Nguyen Duy Dat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 959 - 980
  • [5] Removable sets for Holder continuous p-harmonic functions on metric measure spaces
    Makalainen, Tero
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 605 - 624
  • [6] The Perron method for p-harmonic functions in metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) : 398 - 429
  • [7] The Dirichlet problem for p-harmonic functions on metric spaces
    Björn, A
    Björn, J
    Shanmugalingam, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 556 : 173 - 203
  • [8] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Gaczkowski, Michal
    Gorka, Przemyslaw
    POTENTIAL ANALYSIS, 2009, 31 (03) : 203 - 214
  • [9] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Michał Gaczkowski
    Przemysław Górka
    Potential Analysis, 2009, 31 : 203 - 214
  • [10] The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
    Lucia, Marcello
    Puls, Michael J.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 111 - 122