Effectiveness of error correcting output codes in multiclass learning problems

被引:0
|
作者
Masulli, F
Valentini, G
机构
[1] Ist Nazl Fis Mat, I-16146 Genoa, Italy
[2] Univ Genoa, DISI, I-16146 Genoa, Italy
来源
MULTIPLE CLASSIFIER SYSTEMS | 2000年 / 1857卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the framework of decomposition methods for multiclass classification problems, error correcting output codes (ECOC) can be fruitfully used as codewords for coding classes in order to enhance the generalization capability of learning machines. The effectiveness of error correcting output codes depends mainly on the independence of code-word bits and on the accuracy by which each dichotomy is learned. Separated and non-linear dichotomizers can improve the independence among computed codeword bits, thus fully exploiting the error recovering capabilities of ECOC. In the experimentation presented in this paper we compare ECOC decomposition methods implemented through monolithic multi-layer perceptrons and sets of linear and non-linear independent dichotomizers. The most effectiveness of ECOC decomposition scheme is obtained by Parallel Non-linear Dichotomizers (PND), a learning machine based on decomposition of polychotomies into dichotomics, using non linear independent dichotomizers.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [1] Solving Multiclass Learning Problems via Error-Correcting Output Codes
    Dietterich, Thomas G.
    Bakiri, Ghulum
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1994, 2 : 263 - 286
  • [2] Good error correcting output codes for adaptive multiclass learning
    Tapia, E
    González, JC
    García-Villalba, J
    [J]. MULTIPLE CLASSIFIER SYSTEMS, PROCEEDING, 2003, 2709 : 156 - 165
  • [3] System Evaluation of Ternary Error-Correcting Output Codes for Multiclass Classification Problems
    Hirasawa, Shigeichi
    Kumoi, Gendo
    Yagi, Hideki
    Kobayashi, Manabu
    Goto, Masayuki
    Sakai, Tetsuya
    Inazumi, Hiroshige
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 2893 - 2898
  • [4] Creating Effective Error Correcting Output Codes for Multiclass Classification
    Chmielnicki, Wieslaw
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2015), 2015, 9121 : 502 - 514
  • [5] Spectral Error Correcting Output Codes for Efficient Multiclass Recognition
    Zhang, Xiao
    Liang, Lin
    Shum, Heung-Yeung
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1111 - 1118
  • [6] Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification
    Park, Sang-Hyeun
    Fuernkranz, Johannes
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 189 - 204
  • [7] Improving multiclass classification using neighborhood search in error correcting output codes
    Eghbali, Niloufar
    Montazer, Gholam Ali
    [J]. PATTERN RECOGNITION LETTERS, 2017, 100 : 74 - 82
  • [8] Multiclass Learning for Writer Identification using Error-Correcting Codes
    Porwal, Utkarsh
    Ramaiah, Chetan
    Kumar, Ashish
    Govindaraju, Venu
    [J]. 2014 11TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS 2014), 2014, : 16 - 20
  • [9] Stochastic organization of output codes in multiclass learning problems
    Utschick, W
    Weichselberger, W
    [J]. NEURAL COMPUTATION, 2001, 13 (05) : 1065 - 1102
  • [10] Active learning with error-correcting output codes
    Gu, Shilin
    Cai, Yang
    Shan, Jincheng
    Hou, Chenping
    [J]. NEUROCOMPUTING, 2019, 364 : 182 - 191