The SPIRAL2 facility at GANIL, which entered recently in the construction phase consists of a new superconducting linear accelerator delivering high intensity, up to 40 MeV, light (proton, deuteron, (3-4)He) beams as well as a large variety of 14.5 MeV/nucleon heavy-ion beams and the associated Rare Isotope Beam facility. Using a dedicated converter and the 5 mA deuteron beam, a neutron-induced fission rate is expected to approach 10(14) fissions/s for high-density UC(x) target. The energies of accelerated RIBs will reach 5-10 MeV/nucleon for fission fragments and 20 MeV/nucleon for neutron-deficient nuclei. The physics case of SPIRAL2 is based on the use of high intensity RIBs & stable-ion beams and on possibilities to perform several experiments simultaneously. A use of these beams at a new low-energy ISOL facility (DESIR) and their acceleration to several MeV/nucleon will open new possibilities in nuclear structure physics, nuclear astrophysics and reaction dynamics studies. The high intensities (up to 10(11)pps) and a high cost of RIBs impose a use of the most efficient and innovative detection systems like ACTAR, FAZIA, GASPARD, HELIOS, NEDA, PARIS and a new separator/spectrometer S(3).