REMOVABLE SETS FOR HOLDER CONTINUOUS p(x)-HARMONIC FUNCTIONS

被引:1
|
作者
Lyaghfouri, A. [1 ]
机构
[1] Fields Inst, Toronto, ON M5T 3J1, Canada
关键词
p(x)-harmonic functions; variable exponents Sobolev spaces; Holder continuity; Hausdorff measure; removable sets; ELLIPTIC-EQUATIONS;
D O I
10.1142/S021953051250008X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish that a closed set E is removable for C-0,C-alpha Holder continuous p(x)-harmonic functions in a bounded open domain Omega of R-n, n >= 2, provided that for each compact subset K of E, the (n - p(K) + alpha(p(K) - 1))-Hausdorff measure of K is zero, where p(K) - max(x is an element of K) p(x).
引用
收藏
页数:8
相关论文
共 50 条