GENoPPML - a framework for genomic privacy-preserving machine learning

被引:3
|
作者
Carpov, Sergiu [1 ]
Gama, Nicolas [1 ]
Georgieva, Mariya [1 ]
Jetchev, Dimitar [1 ]
机构
[1] Inpher, Lausanne, Switzerland
关键词
privacy-preserving machine learning; multiparty computation; homomorphic encryption; genomic privacy; differential privacy;
D O I
10.1109/CLOUD55607.2022.00076
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a framework GENoPPML for privacy preserving machine learning in the context of sensitive genomic data processing. The technology combines secure multiparty computation techniques based on the recently proposed MANTICORE framework for model training and fully homomorphic encryption based on TFH E for model inference. The framework was successfully used to solve breast cancer prediction problems on gene expression datasets coming from distinct private sources while preserving their privacy - the solution winning 1st place for both Tracks I and III of the genomic privacy competition iDASH'2020. Extensive benchmarks and comparisons to existing works are performed. Our 2 -party logistic regression computation is 11 x faster than the one in [1] on the same dataset and it uses only one CPU core.
引用
收藏
页码:532 / 542
页数:11
相关论文
共 50 条
  • [1] A Distributed Trust Framework for Privacy-Preserving Machine Learning
    Abramson, Will
    Hall, Adam James
    Papadopoulos, Pavlos
    Pitropakis, Nikolaos
    Buchanan, William J.
    TRUST, PRIVACY AND SECURITY IN DIGITAL BUSINESS, TRUSTBUS 2020, 2020, 12395 : 205 - 220
  • [2] Privacy-Preserving Machine Learning
    Chow, Sherman S. M.
    FRONTIERS IN CYBER SECURITY, 2018, 879 : 3 - 6
  • [3] A Privacy-Preserving Framework for Collaborative Machine Learning with Kernel methods
    Hannemann, Anika
    Uenal, Ali Burak
    Swaminathan, Arjhun
    Buchmann, Erik
    Akguen, Mete
    2023 5TH IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS, TPS-ISA, 2023, : 82 - 90
  • [4] Privacy-Preserving Machine Learning [Cryptography]
    Kerschbaum, Florian
    Lukas, Nils
    IEEE SECURITY & PRIVACY, 2023, 21 (06) : 90 - 94
  • [5] Survey on Privacy-Preserving Machine Learning
    Liu J.
    Meng X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (02): : 346 - 362
  • [6] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [7] Privacy-Preserving Machine Learning on Apache Spark
    Brito, Claudia V.
    Ferreira, Pedro G.
    Portela, Bernardo L.
    Oliveira, Rui C.
    Paulo, Joao T.
    IEEE ACCESS, 2023, 11 : 127907 - 127930
  • [8] Privacy-preserving machine learning with tensor networks
    Pozas-Kerstjens, Alejandro
    Hernandez-Santana, Senaida
    Monturiol, Jose Ramon Pareja
    Lopez, Marco Castrillon
    Scarpa, Giannicola
    Gonzalez-Guillen, Carlos E.
    Perez-Garcia, David
    QUANTUM, 2024, 8
  • [9] Challenges of Privacy-Preserving Machine Learning in IoT
    Zheng, Mengyao
    Xu, Dixing
    Jiang, Linshan
    Gu, Chaojie
    Tan, Rui
    Cheng, Peng
    PROCEEDINGS OF THE 2019 INTERNATIONAL WORKSHOP ON CHALLENGES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR INTERNET OF THINGS (AICHALLENGEIOT '19), 2019, : 1 - 7
  • [10] Differential Privacy-preserving Distributed Machine Learning
    Wang, Xin
    Ishii, Hideaki
    Du, Linkang
    Cheng, Peng
    Chen, Jiming
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7339 - 7344