New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles

被引:45
|
作者
Gossmann, Rebecca [1 ]
Langer, Klaus [1 ]
Mulac, Dennis [1 ]
机构
[1] Univ Munster, Inst Pharmaceut Technol & Biopharm, D-48149 Munster, Germany
来源
PLOS ONE | 2015年 / 10卷 / 07期
关键词
DRUG-DELIVERY; ORAL DELIVERY; MODEL; SURFACTANTS; ESTRADIOL; CELLS;
D O I
10.1371/journal.pone.0127532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower cytotoxic activity against Caco-2 cells. In conclusion this study offers a closer and critical point of view on preparation, in vitro and analytical evaluation of DMAB-stabilized PLGA nanoparticles for the physiological use.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Didodecyldimethylammonium bromide (DMAB) stabilized poly(lactic-co-glycolic acid) (PLGA) nanoparticles: Uptake and cytotoxic potential in Caco2 cells
    Gossmann, R.
    Spek, S.
    Langer, K.
    Mulac, D.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2018, 43 : 430 - 438
  • [2] Poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview
    Kumar, Lalit
    Kukreti, Gauree
    Rana, Ritesh
    Chaurasia, Himanshu
    Sharma, Anchal
    Sharma, Neelam
    Komal
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (37) : 2940 - 2953
  • [3] Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation
    Huang, Wei
    Zhang, Chenming
    BIOTECHNOLOGY JOURNAL, 2018, 13 (01)
  • [4] Formulation and Characterization of Antibody Coated Poly(lactic-co-glycolic acid) Nanoparticles to Target Metastatic Cancer
    Thamake, Sanjay I.
    Ranjan, Amalendu
    Raut, Sangram L.
    Gryczynski, Zygmunt
    Vishwanatha, Jamboor K.
    FASEB JOURNAL, 2010, 24
  • [5] Complexes of rare earth ions embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles: Characterization and spectroscopic study
    Gaglio, Salvatore Calogero
    De Rosa, Chiara
    Piccinelli, Fabio
    Romeo, Alessandro
    Perduca, Massimiliano
    OPTICAL MATERIALS, 2019, 94 : 249 - 256
  • [6] Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis
    Amaral, Andre C.
    Bocca, Anamelia L.
    Ribeiro, Alice M.
    Nunes, Janayna
    Peixoto, Danielle L. G.
    Simioni, Andreza R.
    Primo, Fernando L.
    Lacava, Zulmira G. M.
    Bentes, Ricardo
    Titze-de-Almeida, Ricardo
    Tedesco, Antonio C.
    Morais, Paulo C.
    Felipe, Maria Sueli S.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2009, 63 (03) : 526 - 533
  • [7] Antiviral activity against Zika virus of a new formulation of curcumin in poly lactic-co-glycolic acid nanoparticles
    Natalia Pacho, Maria
    Nahuel Pugni, Eugenio
    Diaz Sierra, Johanna Briyith
    Laura Morell, Maria
    Soledad Sepulveda, Claudia
    Beatriz Damonte, Elsa
    Carina Garcia, Cybele
    Beatriz D'Accorso, Norma
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2021, 73 (03) : 357 - 365
  • [8] Synthesis and Characterization of Biodegradable Poly(lactic-co-glycolic acid)
    Mei, Fangfang
    Peng, Ya
    Lu, Shoutao
    Sun, Fei
    Zhang, Ying
    Ge, Cui
    Zhang, Yong
    Gu, Hualin
    Wang, Yangdan
    Zhao, Xinwei
    Wang, Guoyao
    Journal of Macromolecular Science Part B-Physics, 2015, 54 (05): : 562 - 570
  • [9] Development and characterization of poly(lactic-co-glycolic) acid nanoparticles loaded with copaiba oleoresin
    de Almeida Borges, Vinicius Raphael
    Tavares, Marina R.
    da Silva, Julianna Henriques
    Tajber, Lidia
    Boylan, Fabio
    Ribeiro, Ana Ferreira
    Nasciutti, Luiz Eurico
    Cabral, Lucio Mendes
    de Sousa, Valeria Pereira
    PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2018, 23 (04) : 343 - 350
  • [10] Preparation, characterization and in vitro evaluation of IVM loaded poly(lactic-co-glycolic acid) (PLGA) microspheres
    Li, Guiyu
    Lu, Xihong
    Li, Xuehu
    Tao, Lei
    Liang, Jianping
    ADVANCED MATERIALS AND PROCESSES, PTS 1-3, 2011, 311-313 : 1751 - +