On the binary relation ≤u on self-adjoint Hilbert space operators

被引:2
|
作者
Moslehian, M. S. [1 ]
Sales, S. M. S. Nabavi [1 ]
Najafi, H. [1 ]
机构
[1] Ferdowsi Univ Mashhad, CEAAS, Dept Pure Math, Mashhad 91775, Iran
关键词
MONOTONE-FUNCTIONS;
D O I
10.1016/j.crma.2012.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given self-adjoint operators A, B is an element of B(H) it is said A <=(u) B whenever A <= U*BU for some unitary operator U. We show that A <=(u) B if and only if f(g(A)(r)) <=(u) f(g(B)(r)) for any increasing operator convex function f. any operator monotone function g and any positive number r. We present some sufficient conditions under which if B <= A <= U*BU, then B = A = U*BU. Finally we prove that if A(n) <= U*A(n)U for all n is an element of N, then A = U*AU. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:407 / 410
页数:4
相关论文
共 50 条