Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM

被引:16
|
作者
Hayder, Gasim [1 ]
Solihin, Mahmud Iwan [2 ]
Najwa, M. R. N. [3 ]
机构
[1] Univ Tenaga Nasl UNITEN, Coll Engn, Dept Civil Engn, Kajang 43000, Selangor, Malaysia
[2] UCSI Univ, Fac Engn Technol & Built Environm, Jalan Puncak Menara Gading, Kuala Lumpur 56000, Malaysia
[3] Univ Tenaga Nasl UNITEN, Coll Grad Studies, Kajang 43000, Selangor, Malaysia
关键词
deep learning; LSTM model; multi-step-ahead prediction; NARX model; neural networks; river flow prediction;
D O I
10.2166/h2oj.2022.134
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Kelantan river (Sungai Kelantan in Malaysia) basin is one of the essential catchments as it has a history of flood events. Numerous studies have been conducted in river basin modelling for the prediction of flow and mitigation of flooding events as well as water resource management. Therefore, having multi-step-ahead forecasting for river flow (RF) is of important research interest in this regard. This study presents four different approaches for multi-step-ahead forecasting for the Kelantan RF, using NARX (nonlinear autoregressive with exogenous inputs) neural networks and deep learning recurrent neural networks called LSTM (long short-term memory). The dataset used was obtained in monthly record for 29 years between January 1988 and December 2016. The results show that two recursive methods using NARX and LSTM are able to do multi-step-ahead forecasting on 52 series of test datasets with NSE (Nash-Sutcliffe efficiency coefficient) values of 0.44 and 0.59 for NARX and LSTM, respectively. For few-step-ahead forecasting, LSTM with direct sequence-to-sequence produces promising results with a good NSE value of 0.75 (in case of two-step-ahead forecasting). However, it needs a larger data size to have better performance in longer-stepahead forecasting. Compared with other studies, the data used in this study is much smaller.
引用
收藏
页码:42 / 59
页数:18
相关论文
共 50 条
  • [1] Multi-step-ahead prediction using dynamic recurrent neural networks
    Parlos, AG
    Rais, OT
    Atiya, AF
    NEURAL NETWORKS, 2000, 13 (07) : 765 - 786
  • [2] Multi-step-ahead Cyclone Intensity Prediction with Bayesian Neural Networks
    Deo, Ratneel
    Chandra, Rohitash
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11671 : 282 - 295
  • [3] Multi-Step-Ahead Time Series Prediction Method with Stacking LSTM Neural Network
    Wang, XiaoFeng
    Zhang, Ying
    2020 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2020), 2020, : 51 - 55
  • [4] Multi-Step-Ahead Chaotic Time Series Prediction using Coevolutionary Recurrent Neural Networks
    Hussein, Shamina
    Chandra, Rohitash
    Sharma, Anuraganand
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3084 - 3091
  • [5] Multi-step-ahead neural networks for flood forecasting
    Chang, Fi-John
    Chiang, Yen-Ming
    Chang, Li-Chiu
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2007, 52 (01): : 114 - 130
  • [6] Strategies of Multi-Step-ahead Forecasting for Blood Glucose Level using LSTM Neural Networks: A Comparative Study
    El Idrissi, Touria
    Idri, Ali
    Kadi, Ilham
    Bakkoury, Zohra
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF, 2020, : 337 - 344
  • [7] Multi-step-ahead prediction of thermal load in regional energy system using deep learning method
    Lu, Yakai
    Tian, Zhe
    Zhou, Ruoyu
    Liu, Wenjing
    ENERGY AND BUILDINGS, 2021, 233
  • [8] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Xingsheng Shu
    Yong Peng
    Wei Ding
    Ziru Wang
    Jian Wu
    Water Resources Management, 2022, 36 : 3949 - 3964
  • [9] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Shu, Xingsheng
    Peng, Yong
    Ding, Wei
    Wang, Ziru
    Wu, Jian
    WATER RESOURCES MANAGEMENT, 2022, 36 (11) : 3949 - 3964
  • [10] Hybrid Deep Learning Approach for Multi-Step-Ahead Daily Rainfall Prediction Using GCM Simulations
    Khan, Mohd Imran
    Maity, Rajib
    IEEE ACCESS, 2020, 8 : 52774 - 52784