AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching

被引:34
|
作者
Song, Xiao [1 ]
Yang, Guorun [1 ,3 ]
Zhu, Xinge [2 ]
Zhou, Hui [1 ]
Wang, Zhe [1 ,4 ]
Shi, Jianping [1 ,5 ]
机构
[1] SenseTime Res, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing, Peoples R China
[4] Shanghai AI Lab, Shanghai, Peoples R China
[5] Shanghai Jiao Tong Univ, Qing Yuan Res Inst, Shanghai, Peoples R China
关键词
D O I
10.1109/CVPR46437.2021.01019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, records on stereo matching benchmarks are constantly broken by end-to-end disparity networks. However, the domain adaptation ability of these deep models is quite poor. Addressing such problem, we present a novel domain-adaptive pipeline called AdaStereo that aims to align multi-level representations for deep stereo matching networks. Compared to previous methods for adaptive stereo matching, our AdaStereo realizes a more standard, complete and effective domain adaptation pipeline. Firstly, we propose a non-adversarial progressive color transfer algorithm for input image-level alignment. Secondly, we design an efficient parameter-free cost normalization layer for internal feature-level alignment. Lastly, a highly related auxiliary task, self-supervised occlusion-aware reconstruction is presented to narrow down the gaps in output space. Our AdaStereo models achieve state-of-the-art cross-domain performance on multiple stereo benchmarks, including KITTI, Middlebury, ETH3D, and DrivingStereo, even outperforming disparity networks finetuned with target-domain ground-truths.
引用
收藏
页码:10323 / 10332
页数:10
相关论文
共 50 条
  • [1] AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach
    Xiao Song
    Guorun Yang
    Xinge Zhu
    Hui Zhou
    Yuexin Ma
    Zhe Wang
    Jianping Shi
    [J]. International Journal of Computer Vision, 2022, 130 : 226 - 245
  • [2] AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach
    Song, Xiao
    Yang, Guorun
    Zhu, Xinge
    Zhou, Hui
    Ma, Yuexin
    Wang, Zhe
    Shi, Jianping
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (02) : 226 - 245
  • [3] Correction to: AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach
    Xiao Song
    Guorun Yang
    Xinge Zhu
    Hui Zhou
    Yuexin Ma
    Zhe Wang
    Jianping Shi
    [J]. International Journal of Computer Vision, 2022, 130 : 884 - 884
  • [4] AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach (vol 130, pg 226, 2022)
    Song, Xiao
    Yang, Guorun
    Zhu, Xinge
    Zhou, Hui
    Ma, Yuexin
    Wang, Zhe
    Shi, Jianping
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (03) : 884 - 884
  • [5] Efficient Stereo Matching Using Adaptive Manifolds
    Jiang, Lei
    Zhao, Hanli
    [J]. PROCEEDINGS NICOGRAPH INTERNATIONAL 2016, 2016, : 92 - 95
  • [6] Adaptive Neighbor Embedding for Efficient Stereo Matching
    Chong, Ai-Xin
    Yin, Hui
    Wan, Jin
    Liu, Yan-Ting
    Du, Qian-Qian
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2449 - 2458
  • [7] AANet: Adaptive Aggregation Network for Efficient Stereo Matching
    Xu, Haofei
    Zhang, Juyong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1956 - 1965
  • [8] IMPLEMENTING AN ADAPTIVE APPROACH FOR DENSE STEREO-MATCHING
    Stentoumis, Christos
    Grammatikopoulos, Lazaros
    Kalisperakis, Ilias
    Karras, George
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION V, 2012, 39-B5 : 309 - 314
  • [9] Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo Matching
    Jing, Junpeng
    Li, Jiankun
    Xiong, Pengfei
    Liu, Jiangyu
    Liu, Shuaicheng
    Guo, Yichen
    Deng, Xin
    Xu, Mai
    Jiang, Lai
    Sigal, Leonid
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3295 - 3304
  • [10] Local stereo matching algorithm with efficient matching cost and adaptive guided image filter
    Shiping Zhu
    Lina Yan
    [J]. The Visual Computer, 2017, 33 : 1087 - 1102