On a conjecture about the μ-permanent

被引:4
|
作者
Da Fonseca, CM [1 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
来源
LINEAR & MULTILINEAR ALGEBRA | 2005年 / 53卷 / 03期
关键词
Hermitian matrix; permanent; determinant; digraph; tree;
D O I
10.1080/03081080500092372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = (a(ij)) be an n-by-n matrix. For any real mu, define the polynomial P-mu (A) Sigma(sigma is an element of Sn) a(1 sigma(1))...a(n sigma(n)) mu(l(sigma)), where l(sigma) is the number of inversions of the permutation sigma in the symmetric group S-n. We prove that P-mu(A) is a strictly increasing function of mu is an element of [- 1, 1], for a Hermitian positive definite nondiagonal matrix A, whose graph is a tree.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [1] VANDERWAERDEN PERMANENT CONJECTURE
    BUTLER, KKH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A620 - A620
  • [2] VANDERWAERDEN PERMANENT CONJECTURE
    DUBOIS, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (02): : 352 - 354
  • [3] An analytic approach to a permanent conjecture
    Zhang, Fuzhen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (04) : 1570 - 1579
  • [4] About the Collatz conjecture
    Andrei, S
    Masalagiu, C
    ACTA INFORMATICA, 1998, 35 (02) : 167 - 179
  • [5] A conjecture about hadrons
    Beane, SR
    Savage, MJ
    PHYSICS LETTERS B, 2003, 556 (3-4) : 142 - 152
  • [6] A Conjecture about BIBDs
    Rasch, D.
    Teuscher, F.
    Verdooren, L. R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (05) : 1526 - 1537
  • [7] A conjecture about Alcantara
    Zattara, Enrique D.
    HISPAMERICA-REVISTA DE LITERATURA, 2023, 52 (155): : 127 - 128
  • [8] About the QWEP conjecture
    Ozawa, N
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (05) : 501 - 530
  • [9] About the Collatz conjecture
    Ştefan Andrei
    Cristian Masalagiu
    Acta Informatica, 1998, 35 : 167 - 179
  • [10] Conjecture about Character
    Meyers, Jean
    MOYEN AGE, 2018, 124 (02): : 506 - 508