Continuous-variable entanglement distillation of non-Gaussian mixed states

被引:28
|
作者
Dong, Ruifang [1 ,2 ]
Lassen, Mikael [1 ,2 ]
Heersink, Joel [1 ,3 ]
Marquardt, Christoph [1 ,3 ]
Filip, Radim [4 ]
Leuchs, Gerd [1 ,3 ]
Andersen, Ulrik L. [2 ]
机构
[1] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[2] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[3] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
[4] Palacky Univ, Dept Opt, CZ-77200 Olomouc, Czech Republic
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 01期
关键词
QUANTUM; PURIFICATION;
D O I
10.1103/PhysRevA.82.012312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Continuous Variable Entanglement Distillation of Non-Gaussian States
    Lassen, Mikael
    Dong, Ruifang
    Heersink, Joel
    Marquardt, Christoph
    Filip, Radim
    Leuchs, Gerd
    Andersen, Ulrik L.
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 177 - +
  • [2] Non-Gaussian continuous-variable entanglement and steering
    Olsen, M. K.
    Corney, J. F.
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [3] Non-Gaussian Continuous-Variable Graph States
    Walschaers, Mattia
    Parigi, Valentina
    Treps, Nicolas
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [4] Tailoring Non-Gaussian Continuous-Variable Graph States
    Walschaers, Mattia
    Sarkar, Supratik
    Parigi, Valentina
    Treps, Nicolas
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (22)
  • [5] Photonic families of non-Gaussian entangled states and entanglement criteria for continuous-variable systems
    Namiki, Ryo
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [6] Non-gaussian continuous-variable teleportation
    Marian, Paulina
    Marian, Tudor A.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 721 - 726
  • [7] Nonclassical correlations in continuous-variable non-Gaussian Werner states
    Tatham, Richard
    Mista, Ladislav, Jr.
    Adesso, Gerardo
    Korolkova, Natalia
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [8] Distillation of continuous-variable entanglement
    Fiurasek, Jaromir
    Mista, Ladislav
    Filip, Radim
    [J]. QUANTUM INFORMATION WITH CONTINOUS VARIABLES OF ATOMS AND LIGHT, 2007, : 101 - +
  • [9] Improving the entanglement transfer from continuous-variable systems to localized qubits using non-Gaussian states
    Casagrande, Federico
    Lulli, Alfredo
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [10] Quantum key distribution using continuous-variable non-Gaussian states
    Borelli, L. F. M.
    Aguiar, L. S.
    Roversi, J. A.
    Vidiella-Barranco, A.
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 893 - 904