Understanding Dependency Patterns in Structural and Functional Brain Connectivity Through fMRI and DTI Data

被引:2
|
作者
Crispino, Marta [1 ]
D'Angelo, Silvia [2 ]
Ranciati, Saverio [3 ]
Mira, Antonietta [4 ]
机构
[1] Univ Grenoble Alpes, LJK, CNRS, INRIA, F-38000 Grenoble, France
[2] Sapienza Univ Rome, Dept Stat Sci, Rome, Italy
[3] Univ Bologna, Dept Stat Sci, Bologna, Italy
[4] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
来源
关键词
Network analysis; Resting state fMRI; DTI; Latent space models; Penalized weighted regression; NETWORK SCIENCE; PREDICTION; MODELS; CORTEX;
D O I
10.1007/978-3-030-00039-4_1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Neuroscience and neuroimaging have been providing new challenges for statisticians and quantitative researchers in general. As datasets of increasing complexity and dimension become available, the need for statistical techniques to analyze brain related phenomena becomes prominent. In this paper, we delve into data coming from functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI). The aim is to combine information from both sources in order to learn possible patterns of dependencies among regions of interest (ROIs) of the brain. First, we infer positions of these regions in a latent space, using the observed structural connectivity provided by the DTI data, to understand if physical spatial coordinates suitably reflect how ROIs are effectively interconnected. Secondly, we inspect Granger causality in the fMRI data in order to capture patterns of activations between ROIs. Then, we compare results from the analysis on these datasets, to find a link between functional and structural connectivity. Preliminary findings show that latent space positions well reflect hemisphere separation of the brain but are not perfectly connected to all the other structural partitions (that is, lobe, cortex, etc.); furthermore, activations of ROIs inferred from fMRI data are tied to observed structural connections derived from DTI scans.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Multimodal Functional and Structural Brain Connectivity Analysis in Autism: A Preliminary Integrated Approach With EEG, fMRI, and DTI
    Cociu, Bogdan Alexandra
    Das, Saptarshi
    Billeci, Lucia
    Jamal, Wasifa
    Maharatna, Koushik
    Calderoni, Sara
    Narzisi, Antonio
    Muratori, Filippo
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2018, 10 (02) : 213 - 226
  • [2] Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia
    Richards, T. L.
    Grabowski, T. J.
    Boord, P.
    Yagle, K.
    Askren, M.
    Mestre, Z.
    Robinson, P.
    Welker, O.
    Gulliford, D.
    Nagy, W.
    Berninger, V.
    [J]. NEUROIMAGE-CLINICAL, 2015, 8 : 408 - 421
  • [3] FUNCTIONAL AND STRUCTURAL CONNECTIVITY AND EXECUTIVE CONTROL IN CHRONIC ALCOHOLISM: A COMBINED DTI AND fMRI STUDY
    Mueller-Oehring, E. M.
    Sullivan, E. V.
    Pfefferbaum, A.
    Schulte, T.
    [J]. ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2011, 35 (06) : 283A - 283A
  • [4] Structural and functional neuronal connectivity in Alzheimer's disease. A combined DTI and fMRI study
    Soldner, J.
    Meindl, T.
    Koch, W.
    Bokde, A. L. W.
    Reiser, M. F.
    Moeller, H. -J.
    Buerger, K.
    Hampel, H.
    Teipel, S. J.
    [J]. NERVENARZT, 2012, 83 (07): : 878 - 887
  • [5] Decoding Autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fMRI data
    Bandyopadhyay, Soham
    Peddi, Santhoshkumar
    Sarma, Monalisa
    Samanta, Debasis
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2024, 405
  • [6] The relationship between disrupted functional connectivity and structural damage in PSP: A resting state fMRI, DTI, VBM study
    Whitwell, J. L.
    Avula, R.
    Master, A.
    Vemuri, P.
    Senjem, M. L.
    Jones, D. T.
    Jack, C. R.
    Josephs, K. A.
    [J]. MOVEMENT DISORDERS, 2011, 26 : S255 - S255
  • [7] Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain
    Lohmann, Gabriele
    Margulies, Daniel S.
    Horstmann, Annette
    Pleger, Burkhard
    Lepsien, Joeran
    Goldhahn, Dirk
    Schloegl, Haiko
    Stumvoll, Michael
    Villringer, Arno
    Turner, Robert
    [J]. PLOS ONE, 2010, 5 (04):
  • [8] Assessing functional connectivity in the human brain by fMRI
    Rogers, Baxter P.
    Morgan, Victoria L.
    Newton, Allen T.
    Gore, John C.
    [J]. MAGNETIC RESONANCE IMAGING, 2008, 26 (01) : 146 - 146
  • [9] Assessment of Functional Connectivity in Autistic Brain fMRI
    Sandhya, C.
    Vidhusha, S.
    Gayathri, R. S.
    Priya, Sneha B.
    Kavitha, A.
    [J]. PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2015, : 169 - 174
  • [10] Assessing functional connectivity in the human brain by fMRI
    Rogers, Baxter P.
    Morgan, Victoria L.
    Newton, Allen T.
    Gore, John C.
    [J]. MAGNETIC RESONANCE IMAGING, 2007, 25 (10) : 1347 - 1357