Hydrodynamic dispersion in a hierarchical network with a power-law distribution of conductances

被引:0
|
作者
Alvarado, V [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Oil & Gas Program, BR-22453900 Rio de Janeiro, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 03期
关键词
D O I
10.1103/PhysRevE.71.036304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dispersion is studied on a two-dimensional hierarchical pore network with a power-law distribution of conductances, i.e., P(g)similar to g(mu-1), with g is an element of(0,1), and mu is the disorderliness parameter (mu>0). A procedure for computing tracer dispersion transport on hierarchical networks was developed. The results show that the effective diffusion coefficient of the network scales similarly as conduction on the same lattice. This means that the disorder length scales for conduction and diffusion processes are the same, and can be predicted from percolation theory. The dispersivity, xi=D-parallel to/U, was found to diverge rapidly as mu -> 0. The result is in agreement with the model developed by Bouchaud and Georges (C.R. Acad. Sci. (Paris) 307 1431, 1988). A limiting value of mu approximate to 0.45 was found, below which the convection-dispersion equation is no longer valid.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] TRANSPORT IN NETWORKS WITH A POWER-LAW DISTRIBUTION OF CONDUCTANCES - THE LADDER AND THE SIERPINSKI GASKET
    TAITELBAUM, H
    DANINO, M
    HAVLIN, S
    WEBMAN, I
    PHYSICAL REVIEW B, 1990, 41 (04): : 2445 - 2448
  • [2] Investigating the power-law distribution of a chemical installations' network
    Reniers, G. L. L.
    Sorensen, K.
    SAFETY, RELIABILITY AND RISK ANALYSIS: BEYOND THE HORIZON, 2014, : 2799 - 2804
  • [3] Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling
    Hrafnkelsson, Birgir
    Sigurdarson, Helgi
    Rognvaldsson, Solvi
    Jansson, Axel Orn
    Vias, Rafael Daniel
    Gardarsson, Sigurdur M.
    ENVIRONMETRICS, 2022, 33 (02)
  • [4] NONUNIVERSAL TRANSPORT EXPONENTS IN QUASI-ONE-DIMENSIONAL SYSTEMS WITH A POWER-LAW DISTRIBUTION OF CONDUCTANCES
    HAVLIN, S
    BUNDE, A
    WEISSMAN, H
    AHARONY, A
    PHYSICAL REVIEW B, 1987, 35 (01): : 397 - 399
  • [5] Network model of deviation from power-law distribution in complex network
    Jiang, J.
    Wang, R.
    Wang, Q. A.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 79 (01): : 29 - 33
  • [6] Network model of deviation from power-law distribution in complex network
    J. Jiang
    R. Wang
    Q. A. Wang
    The European Physical Journal B, 2011, 79 : 29 - 33
  • [7] Effect of power-law ionic conductances in the Hodgkin and Huxley model
    Fidel Santamaria
    BMC Neuroscience, 16 (Suppl 1)
  • [8] Explaining the power-law degree distribution in a social commerce network
    Stephen, Andrew T.
    Toubia, Olivier
    SOCIAL NETWORKS, 2009, 31 (04) : 262 - 270
  • [9] Power-law hereditariness of hierarchical fractal bones
    Deseri, Luca
    Di Paola, Mario
    Zingales, Massimiliano
    Pollaci, Pietro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2013, 29 (12) : 1338 - 1360
  • [10] MODAL DISPERSION OF POWER-LAW PROFILES WITH TAILS
    WEIERHOLT, A
    APPLIED OPTICS, 1980, 19 (14): : 2439 - 2441