High-Titer Production of Olivetolic Acid and Analogs in Engineered Fungal Host Using a Nonplant Biosynthetic Pathway

被引:17
|
作者
Okorafor, Ikechukwu C. [1 ]
Chen, Mengbin [1 ]
Tang, Yi [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
来源
ACS SYNTHETIC BIOLOGY | 2021年 / 10卷 / 09期
基金
美国国家科学基金会;
关键词
olivetolic acid; fungal pathway; cannabinoids; resorcylic acid; polyketide synthase; genome mining; ACYL-CARRIER PROTEIN; ORIENTED COMBINATORIAL BIOSYNTHESIS; POLYKETIDE SYNTHASES; NATURAL-PRODUCT; IDENTIFICATION; THIOESTERASE; HYPOTHEMYCIN; CANNABINOIDS; RADICICOL; SCAFFOLDS;
D O I
10.1021/acssynbio.1c00309
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The microbial synthesis of cannabinoids and related molecules requires access to the intermediate olivetolic acid (OA). Whereas plant enzymes have been explored for E. coli and yeast biosynthesis, moderate yields and shunt product formation are major hurdles. Here, based on the chemical logic to form 2,4-dihydroxybenzoate-containing natural products, we discovered a set of fungal tandem polyketide synthases that can produce OA and the related octanoyl-primed derivative sphaerophorolcarboxylic acid in high titers using the model organism Aspergillus nidulans. This new set of enzymes will enable new synthetic biology strategies to access microbial cannabinoids.
引用
收藏
页码:2159 / 2166
页数:8
相关论文
共 50 条
  • [1] High-Titer Production of the Fungal Anhydrotetracycline, TAN-1612, in Engineered Yeasts
    Baldera-Aguayo, Pedro A.
    Lee, Arden
    Cornish, Virginia W.
    ACS SYNTHETIC BIOLOGY, 2022, : 2429 - 2444
  • [2] High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae
    Wong, Jeff
    de Rond, Tristan
    d'Espaux, Leo
    van der Horst, Cas
    Dev, Ishaan
    Rios-Solis, Leo
    Kirby, James
    Scheller, Henrik
    Keasling, Jay
    METABOLIC ENGINEERING, 2018, 45 : 142 - 148
  • [3] High-Titer Glutamic Acid Production from Lignocellulose Using an Engineered Corynebacterium glutamicum with Simultaneous Co-utilization of Xylose and Glucose
    Jin, Ci
    Huang, Zhen
    Bao, Jie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (16): : 6315 - 6322
  • [4] High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae
    Zhang, Chuanbo
    Ju, Haiyan
    Lu, Chun-Zhe
    Zhao, Fanglong
    Liu, Jingjing
    Guo, Xiaoyan
    Wu, Yufen
    Zhao, Guang-Rong
    Lu, Wenyu
    MICROBIAL CELL FACTORIES, 2019, 18 (1)
  • [5] High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae
    Chuanbo Zhang
    Haiyan Ju
    Chun-Zhe Lu
    Fanglong Zhao
    Jingjing Liu
    Xiaoyan Guo
    Yufen Wu
    Guang-Rong Zhao
    Wenyu Lu
    Microbial Cell Factories, 18
  • [6] High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida
    Martin, Collin H.
    Prather, Kristala L. Jones
    JOURNAL OF BIOTECHNOLOGY, 2009, 139 (01) : 61 - 67
  • [7] Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway
    Zhihui Chen
    Yongzhi He
    Xinyu Wu
    Li Wang
    Zhiyang Dong
    Xiuzhen Chen
    Microbial Cell Factories, 21
  • [8] Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway
    Chen, Zhihui
    He, Yongzhi
    Wu, Xinyu
    Wang, Li
    Dong, Zhiyang
    Chen, Xiuzhen
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [9] High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system
    Kang, Kyeong Eop
    Chung, Doo-Pyo
    Kim, Yule
    Chung, Bong-Woo
    Choi, Gi-Wook
    FUEL, 2015, 145 : 18 - 24
  • [10] PRODUCTION OF HIGH-TITER HELPER VIRUS-FREE RETROVIRAL VECTORS BY COCULTIVATION OF PACKAGING CELLS WITH DIFFERENT HOST RANGES
    LYNCH, CM
    MILLER, AD
    JOURNAL OF VIROLOGY, 1991, 65 (07) : 3887 - 3890