Optimizing Hadoop Performance for Big Data Analytics in Smart Grid

被引:9
|
作者
Khan, Mukhtaj [1 ]
Huang, Zhengwen [2 ]
Li, Maozhen [2 ]
Taylor, Gareth A. [2 ]
Ashton, Phillip M. [3 ]
Khan, Mushtaq [4 ]
机构
[1] Abdul Wali Khan Univ Mardan, Dept Comp Sci, Khyber Pakhtunkhwa, Pakistan
[2] Brunel Univ London, Dept Elect & Comp Engn, Uxbridge UB8 3PH, Middx, England
[3] Natl Grid, Syst Operat, Wokingham, England
[4] COMSATS Inst Informat Technol, Dept Comp Sci, Wah Cantt, Pakistan
关键词
DESIGN;
D O I
10.1155/2017/2198262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of theMapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of theHadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA) algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] big data analytics making the smart grid smarter
    Hong, Tao
    IEEE POWER & ENERGY MAGAZINE, 2018, 16 (03): : 12 - 16
  • [2] The Role of Big Data Analytics in Smart Grid Management
    Dhupia, Bhawna
    Rani, M. Usha
    Alameen, Abdalla
    EMERGING RESEARCH IN DATA ENGINEERING SYSTEMS AND COMPUTER COMMUNICATIONS, CCODE 2019, 2020, 1054 : 403 - 412
  • [3] Apache Spark a Big Data Analytics Platform for Smart Grid
    Shyam, R.
    Ganesh, Bharathi H. B.
    Kumar, Sachin S.
    Poornachandran, Prabaharan
    Soman, K. P.
    SMART GRID TECHNOLOGIES (ICSGT- 2015), 2015, 21 : 171 - 178
  • [4] Moving Hadoop to the Cloud for Big Data Analytics
    Astrova, Irina
    Koschel, Arne
    Heine, Felix
    Kalja, Ahto
    DATABASES AND INFORMATION SYSTEMS X (DB&IS 2018), 2019, 315 : 195 - 209
  • [5] Overview of data mining and visual analytics towards big data in smart grid
    Hou, Lin
    Zhang, Yiying
    Yu, Yang
    Shi, Yancui
    Liang, Kun
    2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), 2016, : 453 - 456
  • [6] A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid
    Ponnusamy, Vinoth Kumar
    Kasinathan, Padmanathan
    Madurai Elavarasan, Rajvikram
    Ramanathan, Vinoth
    Anandan, Ranjith Kumar
    Subramaniam, Umashankar
    Ghosh, Aritra
    Hossain, Eklas
    SUSTAINABILITY, 2021, 13 (23)
  • [7] Robust Big Data Analytics for Electricity Price Forecasting in the Smart Grid
    Wang, Kun
    Xu, Chenhan
    Zhang, Yan
    Guo, Song
    Zomaya, Albert Y.
    IEEE TRANSACTIONS ON BIG DATA, 2019, 5 (01) : 34 - 45
  • [8] Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications
    Syed, Dabeeruddin
    Zainab, Ameema
    Ghrayeb, Ali
    Refaat, Shady S.
    Abu-Rub, Haitham
    Bouhali, Othmane
    IEEE ACCESS, 2021, 9 : 59564 - 59585
  • [9] Big Data Analytics in Java']Java with PCJ Library: Performance Comparison with Hadoop
    Nowicki, Marek
    Ryczkowska, Magdalena
    Gorski, Lukasz
    Bala, Piotr
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT II, 2018, 10778 : 318 - 327
  • [10] The Emerging Hadoop, Analytics, Stream Stack for Big Data
    Bernstein, David
    IEEE CLOUD COMPUTING, 2014, 1 (04): : 84 - 86