An invariant characterization of the quasi-spherical Szekeres dust models

被引:13
|
作者
Coley, A. A. [1 ]
Layden, N. [1 ]
McNutt, D. D. [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
[2] Univ Stavanger, Fac Sci & Technol, N-4036 Stavanger, Norway
基金
加拿大自然科学与工程研究理事会;
关键词
INHOMOGENEOUS COSMOLOGIES; KARLHEDE CLASSIFICATION;
D O I
10.1007/s10714-019-2647-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The quasi-spherical Szekeres dust solutions are a generalization of the spherically symmetric Lemaitre-Tolman-Bondi dust models where the spherical shells of constant mass are non-concentric. The quasi-spherical Szekeres dust solutions can be considered as cosmological models and are potentially models for the formation of primordial black holes in the early universe. Any collapsing quasi-spherical Szekeres dust solution where an apparent horizon covers all shell-crossings that will occur can be considered as a model for the formation of a black hole. In this paper we will show that the apparent horizon can be detected by a Cartan invariant. We will show that particular Cartan invariants characterize properties of these solutions which have a physical interpretation such as: the expansion or contraction of spacetime itself, the relative movement of matter shells, shell-crossings and the appearance of necks and bellies.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [1] An invariant characterization of the quasi-spherical Szekeres dust models
    A. A. Coley
    N. Layden
    D. D. McNutt
    General Relativity and Gravitation, 2019, 51
  • [2] Thermodynamics in quasi-spherical Szekeres space-time
    Debnath, Ujjal
    EPL, 2011, 94 (02)
  • [3] GAMMA RADIATION FROM AREAL RADIUS MINIMA IN A QUASI-SPHERICAL SZEKERES METRIC
    Krasinski, Andrzej
    ACTA PHYSICA POLONICA B, 2020, 51 (02): : 483 - 516
  • [4] Are Nanoparticles Spherical or Quasi-Spherical?
    Sokolov, Stanislav V.
    Batchelor-McAuley, Christopher
    Tschulik, Kristina
    Fletcher, Stephen
    Compton, Richard G.
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (30) : 10741 - 10746
  • [5] Quasi-spherical superclusters
    Heinamaki, P.
    Teerikorpi, P.
    Douspis, M.
    Nurmi, P.
    Einasto, M.
    Gramann, M.
    Nevalainen, J.
    Saar, E.
    ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [6] Invariant characterization of Szekeres models with positive cosmological constant
    Layden, N. T.
    Coley, A. A.
    McNutt, D. D.
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (08)
  • [7] Invariant characterization of Szekeres models with positive cosmological constant
    N. T. Layden
    A. A. Coley
    D. D. McNutt
    General Relativity and Gravitation, 2022, 54
  • [8] Fermion quasi-spherical harmonics
    Hunter, G
    Ecimovic, P
    Schlifer, I
    Walker, IM
    Beamish, D
    Donev, S
    Kowalski, M
    Arslan, S
    Heck, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 795 - 803
  • [9] QUASI-SPHERICAL GRAVITATIONAL COLLAPSE
    SZEKERES, P
    PHYSICAL REVIEW D, 1975, 12 (10): : 2941 - 2948
  • [10] Quasi-spherical metrics and applications
    Shi, YG
    Tam, LF
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (01) : 65 - 80