Geodesic spheres and two-point homogeneous spaces

被引:4
|
作者
Berndt, J
Prufer, F
Vanhecke, L
机构
[1] LEIDEN UNIV,FACHBEREICH MATH INFORMAT,D-04109 LEIPZIG,GERMANY
[2] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 LOUVAIN,BELGIUM
关键词
D O I
10.1007/BF02761113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Osserman conjecture and in the isoparametric conjecture it is stated that two-point homogeneous spaces may be characterized via the constancy of the eigenvalues of the Jacobi operator or the shape operator of geodesic spheres, respectively. These conjectures remain open, but in this paper we give complete positive results for similar statements about other symmetric endomorphism fields on small geodesic spheres. In addition, we derive more characteristic properties for this class of spaces by using other properties of small geodesic spheres. In particular, we study Riemannian manifolds with (curvature) homogeneous geodesic spheres.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 50 条