SIMULATING NONSTATIONARY SPATIO-TEMPORAL POISSON PROCESSES USING THE INVERSION METHOD

被引:2
|
作者
Zhang, Haoting [1 ]
Zheng, Zeyu [1 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
关键词
MODELS;
D O I
10.1109/WSC48552.2020.9384098
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the problem of simulating a class of nonstationary spatio-temporal Poisson processes. The Poisson intensity function is non-stationary and piecewise linear in both the time dimension and the spatial location dimensions. We propose an exact simulation algorithm based on the inversion method. This simulation algorithm adopts three advantages. First, the entire procedure involves only closed-form computation with no need for numerical integration or numerical inversion of any function. Each step in the algorithm only requires exact arithmetic operations. Second, the proposed algorithm is sample efficient, especially compared to the thinning method when the maximum intensity value is much larger than the minimum intensity value. Third, the algorithm generates arrivals sequentially, one at a time in ascending order, so that they can be conveniently fed into real-time or online decision-making tools.
引用
收藏
页码:492 / 503
页数:12
相关论文
共 50 条
  • [1] Spatio-temporal Poisson processes for visits to small sets
    Françoise Pène
    Benoît Saussol
    [J]. Israel Journal of Mathematics, 2020, 240 : 625 - 665
  • [2] SPATIO-TEMPORAL POISSON PROCESSES FOR VISITS TO SMALL SETS
    Pene, Francoise
    Saussol, Benoit
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 240 (02) : 625 - 665
  • [3] Modeling wildfires via marked spatio-temporal Poisson processes
    Quinlan, Jose J.
    Diaz-Avalos, Carlos
    Mena, Ramses H.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2021, 28 (03) : 549 - 565
  • [4] Modeling wildfires via marked spatio-temporal Poisson processes
    José J. Quinlan
    Carlos Díaz-Avalos
    Ramsés H. Mena
    [J]. Environmental and Ecological Statistics, 2021, 28 : 549 - 565
  • [5] COMBINED INVERSION AND THINNING METHODS FOR SIMULATING NONSTATIONARY NON-POISSON ARRIVAL PROCESSES
    Liu, Ran
    Kuhl, Michael E.
    Liu, Yunan
    Wilson, James R.
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 586 - 597
  • [6] Spatio-temporal processes
    Harvill, Jane L.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03): : 375 - 382
  • [7] Spatio-Temporal Inversion Using the Selection Kalman Model
    Conjard, Maxime
    Omre, Henning
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7
  • [8] Powerful nonstationary processes on the sun: Spatio-temporal structure and efficient particle acceleration
    Livshits, M. A.
    [J]. GEOMAGNETISM AND AERONOMY, 2009, 49 (08) : 1069 - 1071
  • [9] Powerful nonstationary processes on the sun: Spatio-temporal structure and efficient particle acceleration
    M. A. Livshits
    [J]. Geomagnetism and Aeronomy, 2009, 49 : 1069 - 1071
  • [10] The Spatio-Temporal Multivariate Poisson Lognormal Model
    Zamzuri, Zamira Hasanah
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974