Bases of the intersection cohomology of Grassmannian Schubert varieties

被引:2
|
作者
Patimo, Leonardo [1 ]
机构
[1] Albert Ludwigs Univ Freiburg, Freiburg, Germany
基金
美国国家科学基金会;
关键词
Schubert varieties; Soergel bimodules; Intersection cohomology; Grassmannian; EQUIVARIANT COHOMOLOGY; KAZHDAN; LUSZTIG;
D O I
10.1016/j.jalgebra.2021.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The parabolic Kazhdan-Lusztig polynomials for Grassmannians can be computed by counting Dyck partitions. We "lift" this combinatorial formula to the corresponding category of singular Soergel bimodules to obtain bases of the Horn spaces between indecomposable objects. In particular, we describe bases of intersection cohomology of Schubert varieties in Grassmannians parametrized by Dyck partitions which extend (after dualizing) the classical Schubert basis of the ordinary cohomology. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 400
页数:56
相关论文
共 50 条
  • [1] On torsion in the intersection cohomology of Schubert varieties
    Williamson, Geordie
    JOURNAL OF ALGEBRA, 2017, 475 : 207 - 228
  • [2] Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian
    Ikeda, Takeshi
    ADVANCES IN MATHEMATICS, 2007, 215 (01) : 1 - 23
  • [3] Quantum analogues of Schubert varieties in the Grassmannian
    Lenagan, T. H.
    Rigal, L.
    GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 55 - 70
  • [4] A classification of spherical Schubert varieties in the Grassmannian
    Hodges, Reuven
    Lakshmibai, Venkatramani
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [5] A classification of spherical Schubert varieties in the Grassmannian
    Reuven Hodges
    Venkatramani Lakshmibai
    Proceedings - Mathematical Sciences, 132
  • [6] The isomorphism problem for Grassmannian Schubert varieties
    Tarigradschi, Mihail
    Xu, Weihong
    JOURNAL OF ALGEBRA, 2023, 633 : 225 - 241
  • [7] Cluster structures in Schubert varieties in the Grassmannian
    Serhiyenko, K.
    Sherman-Bennett, M.
    Williams, L.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (06) : 1694 - 1744
  • [8] Smooth torus quotients of Schubert varieties in the Grassmannian
    Bakshi, Sarjick
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [9] Schubert varieties in the Grassmannian and the symplectic Grassmannian via a bounded RSK correspondence
    Papi Ray
    Shyamashree Upadhyay
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 1187 - 1213
  • [10] Schubert varieties in the Grassmannian and the symplectic Grassmannian via a bounded RSK correspondence
    Ray, Papi
    Upadhyay, Shyamashree
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1187 - 1213