Predicting Performance Using Consumer Big Data

被引:0
|
作者
Froot, Kenneth [1 ,2 ]
Kang, Namho [3 ]
Ozik, Gideon [4 ]
Sadka, Ronnie [5 ,6 ]
机构
[1] Harvard Univ, Grad Sch Business, Business Adm, Cambridge, MA 02138 USA
[2] Harvard Univ, Grad Sch Business, Cambridge, MA 02138 USA
[3] Bentley Univ, Finance, Waltham, MA 02452 USA
[4] EDHEC Business Sch, Cambridge, MA USA
[5] Boston Coll, Dept Finance, Chestnut Hill, MA 02167 USA
[6] Boston Coll, Carroll Sch Management, Chestnut Hill, MA 02167 USA
来源
JOURNAL OF PORTFOLIO MANAGEMENT | 2022年 / 48卷 / 03期
关键词
PRICES; ONLINE;
D O I
10.3905/jpm.2021.1.320
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
To predict firms' fundamentals, the authors construct three proxies for real-time corporate sales from fully distinct information sources: in-store foot traffic (IN-STORE), web traffic to companies' websites (WEB), and consumers' interest level in corporate brands and products (BRAND). The authors demonstrate that trading using these proxies, estimated for a sample of 330 firms over 2009-2020, results in significant net-of-transaction-costs profitability. During the pandemic, WEB activity increased significantly whereas IN-STORE experienced a remarkable decrease, reflecting the migration of consumers from physical stores toward online retailers. The results suggest that the information contained in IN-STORE and BRAND is not immediately available to investors, whereas the WEB information diffuses more quickly, and overall information diffusion worsened during the pandemic.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条
  • [1] Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics
    Salehan, Mohammad
    Kim, Dan J.
    [J]. DECISION SUPPORT SYSTEMS, 2016, 81 : 30 - 40
  • [2] Predicting the performance of tunnel boring machines using big operational data
    Zhang, Qianli
    Liu, Zhenyu
    Tan, Jianrong
    [J]. 2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, : 180 - 183
  • [3] Predicting the performance of big data applications on the cloud
    Ardagna, D.
    Barbierato, E.
    Gianniti, E.
    Gribaudo, M.
    Pinto, T. B. M.
    da Silva, A. P. C.
    Almeida, J. M.
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (02): : 1321 - 1353
  • [4] Predicting the performance of big data applications on the cloud
    D. Ardagna
    E. Barbierato
    E. Gianniti
    M. Gribaudo
    T. B. M. Pinto
    A. P. C. da Silva
    J. M. Almeida
    [J]. The Journal of Supercomputing, 2021, 77 : 1321 - 1353
  • [5] Understanding Competition using Big Consumer Search Data
    Ringel, Daniel M.
    Skiera, Bernd
    [J]. 2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 3129 - 3138
  • [6] The Challenges of Using Big Data in the Consumer Credit Sector
    Romanyuk, Kirill
    [J]. INTELLIGENT COMPUTING, VOL 2, 2021, 284 : 221 - 231
  • [7] Simulation-Based Machine Learning for Predicting Academic Performance Using Big Data
    Zhang, Cheng
    Yang, Jinming
    Li, Mingxuan
    Deng, Meng
    [J]. INTERNATIONAL JOURNAL OF GAMING AND COMPUTER-MEDIATED SIMULATIONS, 2024, 16 (01)
  • [8] Big Data: Catching the Consumer
    Galan Otero, Maria Luisa
    [J]. ANUARIO TURISMO Y SOCIEDAD, 2020, 27 : 183 - 186
  • [9] PREDICTING FUTURE VISITORS OF RESTAURANTS USING BIG DATA
    Ma, Xu
    Tian, Yanshan
    Luo, Chu
    Zhang, Yuehui
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 269 - 274
  • [10] Predicting the ratings of Amazon products using Big Data
    Woo, Jongwook
    Mishra, Monika
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (03)