Predicting Performance Using Consumer Big Data

被引:0
|
作者
Froot, Kenneth [1 ,2 ]
Kang, Namho [3 ]
Ozik, Gideon [4 ]
Sadka, Ronnie [5 ,6 ]
机构
[1] Harvard Univ, Grad Sch Business, Business Adm, Cambridge, MA 02138 USA
[2] Harvard Univ, Grad Sch Business, Cambridge, MA 02138 USA
[3] Bentley Univ, Finance, Waltham, MA 02452 USA
[4] EDHEC Business Sch, Cambridge, MA USA
[5] Boston Coll, Dept Finance, Chestnut Hill, MA 02167 USA
[6] Boston Coll, Carroll Sch Management, Chestnut Hill, MA 02167 USA
来源
JOURNAL OF PORTFOLIO MANAGEMENT | 2022年 / 48卷 / 03期
关键词
PRICES; ONLINE;
D O I
10.3905/jpm.2021.1.320
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
To predict firms' fundamentals, the authors construct three proxies for real-time corporate sales from fully distinct information sources: in-store foot traffic (IN-STORE), web traffic to companies' websites (WEB), and consumers' interest level in corporate brands and products (BRAND). The authors demonstrate that trading using these proxies, estimated for a sample of 330 firms over 2009-2020, results in significant net-of-transaction-costs profitability. During the pandemic, WEB activity increased significantly whereas IN-STORE experienced a remarkable decrease, reflecting the migration of consumers from physical stores toward online retailers. The results suggest that the information contained in IN-STORE and BRAND is not immediately available to investors, whereas the WEB information diffuses more quickly, and overall information diffusion worsened during the pandemic.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条
  • [1] Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics
    Salehan, Mohammad
    Kim, Dan J.
    DECISION SUPPORT SYSTEMS, 2016, 81 : 30 - 40
  • [2] Predicting the performance of tunnel boring machines using big operational data
    Zhang, Qianli
    Liu, Zhenyu
    Tan, Jianrong
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, : 180 - 183
  • [3] Predicting the performance of big data applications on the cloud
    Ardagna, D.
    Barbierato, E.
    Gianniti, E.
    Gribaudo, M.
    Pinto, T. B. M.
    da Silva, A. P. C.
    Almeida, J. M.
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (02): : 1321 - 1353
  • [4] Predicting the performance of big data applications on the cloud
    D. Ardagna
    E. Barbierato
    E. Gianniti
    M. Gribaudo
    T. B. M. Pinto
    A. P. C. da Silva
    J. M. Almeida
    The Journal of Supercomputing, 2021, 77 : 1321 - 1353
  • [5] Understanding Competition using Big Consumer Search Data
    Ringel, Daniel M.
    Skiera, Bernd
    2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 3129 - 3138
  • [6] The Challenges of Using Big Data in the Consumer Credit Sector
    Romanyuk, Kirill
    INTELLIGENT COMPUTING, VOL 2, 2021, 284 : 221 - 231
  • [7] Simulation-Based Machine Learning for Predicting Academic Performance Using Big Data
    Zhang, Cheng
    Yang, Jinming
    Li, Mingxuan
    Deng, Meng
    INTERNATIONAL JOURNAL OF GAMING AND COMPUTER-MEDIATED SIMULATIONS, 2024, 16 (01)
  • [8] Big Data: Catching the Consumer
    Galan Otero, Maria Luisa
    ANUARIO TURISMO Y SOCIEDAD, 2020, 27 : 183 - 186
  • [9] PREDICTING FUTURE VISITORS OF RESTAURANTS USING BIG DATA
    Ma, Xu
    Tian, Yanshan
    Luo, Chu
    Zhang, Yuehui
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 269 - 274
  • [10] Predicting the ratings of Amazon products using Big Data
    Woo, Jongwook
    Mishra, Monika
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (03)