Superpixel-based Multiple Change Detection in Very-High-Resolution Remote Sensing Images

被引:0
|
作者
Liu, Sicong [1 ]
Li, Yang [1 ]
Tong, Xiaohua [1 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai, Peoples R China
关键词
change detection; superpixel segmentation; very-high-resolution images; remote sensing; spectral change vectors;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel unsupervised superpixel-based change detection approach to detect multiple changes in Very-High-Resolution remote sensing images. The proposed approach investigates the spectral-spatial variations at superpixel level which aims to enhance the traditional pixel level change detection performance. In particular, superpixel representation of the spectral change vectors is built by exploiting the homogeneity of local objects associating with the change and no-change classes. A decision-level ensemble strategy is designed to generate a reliable binary change detection result. Then the multi-class changes are identified by automatic clustering. Sensitivity of the relevant parameters are analyzed and discussed. Experimental results obtained on a pair of real VHR images confirm the effectiveness of the proposed approach.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images
    Zhang, Hongyan
    Lin, Manhui
    Yang, Guangyi
    Zhang, Liangpei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 28 - 42
  • [2] CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES
    Ehlers, Manfred
    Klonus, Sascha
    Jarmer, Thomas
    Sofina, Natalia
    Michel, Ulrich
    Reinartz, Peter
    Sirmacek, Beril
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 317 - 322
  • [3] A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images
    Li, Ziming
    Yan, Chenxi
    Sun, Ying
    Xin, Qinchuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images
    Gong, Maoguo
    Zhan, Tao
    Zhang, Puzhao
    Miao, Qiguang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05): : 2658 - 2673
  • [5] Superpixel-based interactive classification of very high resolution images
    Vargas, John E.
    Saito, Priscila T. M.
    Falcao, Alexandre X.
    de Rezende, Pedro J.
    dos Santos, Jefersson A.
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 173 - 179
  • [6] Individual Vacant House Detection in Very-High-Resolution Remote Sensing Images
    Zou, Shengyuan
    Wang, Le
    ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 2020, 110 (02) : 449 - 461
  • [7] AN UNSUPERVISED SIAMESE SUPERPIXEL-BASED NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS REMOTE SENSING IMAGES
    Ji, Zhiyuan
    Wang, Xueqian
    Wang, Zhihao
    Li, Gang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5451 - 5454
  • [8] HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images
    Han, Chengxi
    Wu, Chen
    Guo, Haonan
    Hu, Meiqi
    Chen, Hongruixuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3867 - 3878
  • [9] A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images
    Bruzzone, Lorenzo
    Bovolo, Francesca
    PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 609 - 630
  • [10] Individual vacant house detection in very-high-resolution remote sensing images
    Zou, Shengyuan
    Wang, Le
    JOURNAL OF PLANNING LITERATURE, 2020, 35 (03) : 363 - 363