Supercontraction of spider dragline silk for humidity sensing

被引:3
|
作者
Liu, Zhihai [1 ,2 ]
Ji, Xuhao [1 ]
Zhang, Yu [1 ]
Zhang, Min [1 ]
Song, Hongru [1 ]
Zhang, Yaxun [1 ]
Yang, Xinghua [1 ]
Zhang, Jianzhong [1 ]
Yang, Jun [1 ]
Yuan, Libo [3 ]
机构
[1] Harbin Engn Univ, Minist Educ China, Key Lab In Fiber Integrated Opt, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Natl Demonstrat Ctr Expt Phys Educ, Harbin 150001, Peoples R China
[3] Guilin Univ Elect Technol, Photon Res Ctr, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-FIBER; MICROFIBER COUPLER; RELATIVE-HUMIDITY; SENSOR; TEMPERATURE; PROTEIN;
D O I
10.1364/OE.434786
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The spider dragline silk (SDS) has a supercontraction characteristic, which may cause the axial length of the SDS to shrink up to 50% when the SDS is wet or the relative humidity is higher than 58% RH. In this manuscript, we employ the supercontraction characteristic of the SDS to measure relative humidity. We connect two sections of a single-mode fiber (SMF) and a section of multimode fiber (MMF) with a sandwich structure to fabricate a single-mode-multimode-single-mode (SMS) interferometer. Then we fix the SDS on two SMFs to configure a bow-shaped sensing unit. The increase of environmental humidity will cause the supercontraction of the SDS, which will cause the change of the SDS length. The excellent mechanical properties of the SDS will generate a strong pulling force and change the bending of the arch, whose interference spectrum will shift correspondingly. In this way, we may perform relative humidity sensing. In the relative humidity range of 58% RH to 100% RH, the average sensitivity is as high as 6.213 nm/go RH, higher than most fiber-based humidity sensors. Compared with the traditional sensing structure with humidity-sensitive materials, the proposed sensor improves the sensitivity with environmental friendliness. The results suggest that the SDS can be used for high-sensitivity humidity sensors, and its degradability and biocompatibility also have a vast development space in biochemical sensors. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:28864 / 28871
页数:8
相关论文
共 50 条
  • [1] How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk
    Blackledge, Todd A.
    Boutry, Cecilia
    Wong, Shing-Chung
    Baji, Avinash
    Dhinojwala, Ali
    Sahni, Vasav
    Agnarsson, Ingi
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2009, 212 (13): : 1980 - 1988
  • [2] Two Mechanisms for Supercontraction in Nephila Spider Dragline Silk
    Guan, Juan
    Vollrath, Fritz
    Porter, David
    BIOMACROMOLECULES, 2011, 12 (11) : 4030 - 4035
  • [3] Supercontraction forces in spider dragline silk depend on hydration rate
    Agnarsson, Ingi
    Boutry, Cecilia
    Wong, Shing-Chung
    Baji, Avinash
    Dhinojwala, Ali
    Sensenig, Andrew T.
    Blackledge, Todd A.
    ZOOLOGY, 2009, 112 (05) : 325 - 331
  • [4] Supercontraction in Nephila spider dragline silk - Relaxation into equilibrium state
    Ene, Roxana
    Papadopoulos, Periklis
    Kremer, Friedrich
    POLYMER, 2011, 52 (26) : 6056 - 6060
  • [5] Humidity-Driven Supercontraction and Twist in Spider Silk
    Cohen, Noy
    Eisenbach, Claus D.
    PHYSICAL REVIEW LETTERS, 2022, 128 (09)
  • [6] Spider dragline silk for PH sensing
    Zhang, Yu
    Guo, Huigai
    Zhang, Min
    Ning, Yangang
    Liu, Zhihai
    Zhang, Yaxun
    Ji, Xuhao
    Zhang, Jianzhong
    Yuan, Libo
    OPTICS COMMUNICATIONS, 2022, 506
  • [7] Role of Skin Layers on Mechanical Properties and Supercontraction of Spider Dragline Silk Fiber
    Yazawa, Kenjiro
    Malay, Ali D.
    Masunaga, Hiroyasu
    Numata, Keiji
    MACROMOLECULAR BIOSCIENCE, 2019, 19 (03)
  • [8] Supercontraction stress in wet spider dragline
    Fraser I. Bell
    Iain J. McEwen
    Christopher Viney
    Nature, 2002, 416 : 37 - 37
  • [9] A phenomenological theory for hydration-induced supercontraction and twist of spider dragline silk
    Liu, Lei
    Chen, Yaping
    Lei, Jian
    Liu, Dabiao
    EXTREME MECHANICS LETTERS, 2024, 72
  • [10] Spider dragline silk as torsional actuator driven by humidity
    Liu, Dabiao
    Tarakanova, Anna
    Hsu, Claire C.
    Yu, Miao
    Zheng, Shimin
    Yu, Longteng
    Liu, Jie
    He, Yuming
    Dunstan, D. J.
    Buehler, Markus J.
    SCIENCE ADVANCES, 2019, 5 (03)