G2 domain walls in M theory -: art. no. 046006

被引:7
|
作者
House, T [1 ]
Lukas, A [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QJ, E Sussex, England
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevD.71.046006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
M theory is considered in its low-energy limit on a G(2) manifold with nonvanishing flux. Using the Killing spinor equations for linear flux, an explicit set of first-order bosonic equations for supersymmetric solutions is found. These solutions describe a warped product of a domain wall in four-dimensional space-time and a deformed G(2) manifold. It is shown how these domain walls arise from the perspective of the associated four-dimensional N=1 effective supergravity theories. We also discuss the inclusion of membrane and M5-brane sources.
引用
收藏
页码:046006 / 1
页数:18
相关论文
共 50 条
  • [1] Moduli Kahler potential for M theory on a G2 manifold -: art. no. 066003
    Lukas, A
    Morris, S
    [J]. PHYSICAL REVIEW D, 2004, 69 (06): : 17
  • [2] Comments on M theory dynamics on G2 holonomy manifolds -: art. no. 001
    Ita, H
    Oz, Y
    Sakai, T
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2002, (04):
  • [3] G2 quivers -: art. no. 023
    He, YH
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (02):
  • [4] Non-perturbative vacua for M-theory on G2 manifolds -: art. no. 018
    de Carlos, B
    Lukas, A
    Morris, S
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (12):
  • [5] Superpotentials for M-theory on a G2 holonomy manifold and triality symmetry -: art. no. 024
    Curio, G
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (03):
  • [6] M-theory compactifications on certain 'toric' cones of G2 holonomy -: art. no. 066
    Anguelova, L
    Lazaroiu, CI
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (01):
  • [7] Rolling G2 moduli -: art. no. 045
    Lukas, A
    Morris, S
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (01):
  • [8] A simple parametrization for G2 -: art. no. 083520
    Cacciatori, SL
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [9] Euler angles for G2 -: art. no. 083512
    Cacciatori, SL
    Cerchiai, BL
    Della Vedova, A
    Ortenzi, G
    Scotti, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [10] M-theory on toric G2 cones and its type II reduction -: art. no. 038
    Anguelova, L
    Lazaroiu, CI
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2002, (10):