Data processing for mass spectrometry-based metabolomics

被引:421
|
作者
Katajamaa, Mikko
Oresic, Matej
机构
[1] VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland
[2] Turku Ctr Biotechnol, FIN-20521 Turku, Finland
关键词
metabolomics; lipidomics; proteomics; normalization; alignment; liquid chromatography; mass spectrometry; feature extraction; peak detection; deconvolution;
D O I
10.1016/j.chroma.2007.04.021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Modem analytical technologies afford comprehensive and quantitative investigation of a multitude of different metabolites. Typical metabolomic experiments can therefore produce large amounts of data. Handling such complex datasets is an important step that has big impact on extent and quality at which the metabolite identification and quantification can be made, and thus on the ultimate biological interpretation of results. Increasing interest in metabolornics thus led to resurgence of interest in related data processing. A wide variety of methods and software tools have been developed for metabolornics during recent years, and this trend is likely to continue. In this paper we overview the key steps of metabolornic data processing and focus on reviewing recent literature related to this topic, particularly on methods for handling data from liquid chromatography mass spectrometry (LC-MS) experiments. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:318 / 328
页数:11
相关论文
共 50 条
  • [1] Chemometric methods in data processing of mass spectrometry-based metabolomics: A review
    Yi, Lunzhao
    Dong, Naiping
    Yun, Yonghuan
    Deng, Baichuan
    Ren, Dabing
    Liu, Shao
    Liang, Yizeng
    [J]. ANALYTICA CHIMICA ACTA, 2016, 914 : 17 - 34
  • [2] Fusion of mass spectrometry-based metabolomics data
    Smilde, AK
    van der Werf, MJ
    Bijlsma, S
    van der Werff-van-der Vat, BJC
    Jellema, RH
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (20) : 6729 - 6736
  • [3] Mass spectrometry-based metabolomics
    Dettmer, Katja
    Aronov, Pavel A.
    Hammock, Bruce D.
    [J]. MASS SPECTROMETRY REVIEWS, 2007, 26 (01) : 51 - 78
  • [4] Computational methods for processing and interpreting mass spectrometry-based metabolomics
    de Souza, Leonardo Perez
    Fernie, Alisdair R.
    [J]. ESSAYS IN BIOCHEMISTRY, 2024, 68 (01) : 5 - 13
  • [5] MASS SPECTROMETRY-BASED METABOLOMICS OF YEAST
    Crutchfield, Christopher A.
    Lu, Wenyun
    Melamud, Eugene
    Rabinowitz, Joshua D.
    [J]. METHODS IN ENZYMOLOGY, VOL 470: GUIDE TO YEAST GENETICS:: FUNCTIONAL GENOMICS, PROTEOMICS, AND OTHER SYSTEMS ANALYSIS, 2ND EDITION, 2010, 470 : 393 - 426
  • [6] Addressing big data challenges in mass spectrometry-based metabolomics
    Guo, Jian
    Yu, Huaxu
    Xing, Shipei
    Huan, Tao
    [J]. CHEMICAL COMMUNICATIONS, 2022, 58 (72) : 9979 - 9990
  • [7] Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
    Runmin Wei
    Jingye Wang
    Mingming Su
    Erik Jia
    Shaoqiu Chen
    Tianlu Chen
    Yan Ni
    [J]. Scientific Reports, 8
  • [8] Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
    Wei, Runmin
    Wang, Jingye
    Su, Mingming
    Jia, Erik
    Chen, Shaoqiu
    Chen, Tianlu
    Ni, Yan
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [9] Mass spectrometry-based metabolomics in microbiome investigations
    Bauermeister, Anelize
    Mannochio-Russo, Helena
    Costa-Lotufo, Leticia V.
    Jarmusch, Alan K.
    Dorrestein, Pieter C.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2022, 20 (03) : 143 - 160
  • [10] Mass spectrometry-based metabolomics in microbiome investigations
    Anelize Bauermeister
    Helena Mannochio-Russo
    Letícia V. Costa-Lotufo
    Alan K. Jarmusch
    Pieter C. Dorrestein
    [J]. Nature Reviews Microbiology, 2022, 20 : 143 - 160