Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

被引:0
|
作者
Liu, Bo [1 ]
Pop, Mihai [1 ]
机构
[1] Univ Maryland, Inst Adv Comp Studies, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA
关键词
Metagenomics; Metabolic Pathway; MICROBIAL COMMUNITIES; HOMOCYSTEINE LEVELS; FUNCTIONAL-ANALYSIS; GUT MICROBIOME; SERUM FOLATE; OBESE;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (Meta Path) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that Meta Path outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [1] MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets
    Bo Liu
    Mihai Pop
    BMC Proceedings, 5 (Suppl 2)
  • [2] A robust approach for identifying differentially abundant features in metagenomic samples
    Sohn, Michael B.
    Du, Ruofei
    An, Lingling
    BIOINFORMATICS, 2015, 31 (14) : 2269 - 2275
  • [3] MetaLonDA: a flexible R package for identifying time intervals of differentially abundant features in metagenomic longitudinal studies
    Metwally, Ahmed A.
    Yang, Jie
    Ascoli, Christian
    Dai, Yang
    Finn, Patricia W.
    Perkins, David L.
    MICROBIOME, 2018, 6
  • [4] MetaLonDA: a flexible R package for identifying time intervals of differentially abundant features in metagenomic longitudinal studies
    Ahmed A. Metwally
    Jie Yang
    Christian Ascoli
    Yang Dai
    Patricia W. Finn
    David L. Perkins
    Microbiome, 6
  • [5] Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples
    White, James Robert
    Nagarajan, Niranjan
    Pop, Mihai
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (04)
  • [6] Variability in Metagenomic Count Data and Its Influence on the Identification of Differentially Abundant Genes
    Jonsson, Viktor
    Osterlund, Tobias
    Nerman, Olle
    Kristiansson, Erik
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (04) : 311 - 326
  • [7] Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways
    Heath, Allison P.
    Bennett, George N.
    Kavraki, Lydia E.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 70 - +
  • [8] Mechanisms of Sulfamethoxazole biodegradation in mangrove rhizosphere by metagenomic and metabolic pathways
    Yang, Guiqiong
    Zhen, Zhen
    Wu, Weilong
    Yang, Changhong
    Li, Qing
    Li, Xiaofeng
    Yin, Junyong
    Zhong, Xiaolan
    Lin, Zhong
    Zhang, Dayi
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2025, 37
  • [9] Metagenomic analyses for skin microbiota and metabolic pathways in children with eczema
    Leung, T. F.
    Yau, J. W. K.
    Hou, J. J.
    Leung, A. S. Y.
    Cheng, N. S.
    Hon, K. L.
    Tsui, S. K. W.
    ALLERGY, 2019, 74 : 287 - 287
  • [10] Candidate prioritization for low-abundant differentially expressed proteins in 2D-DIGE datasets
    Nandal, Umesh K.
    Vlietstra, Wytze J.
    Byrman, Carsten
    Jeeninga, Rienk E.
    Ringrose, Jeffrey H.
    van Kampen, Antoine H. C.
    Speijer, Dave
    Moerland, Perry D.
    BMC BIOINFORMATICS, 2015, 16