Prediction of Diabetes through Retinal Images Using Deep Neural Network

被引:7
|
作者
Ragab, Mahmoud [1 ,2 ,3 ]
AL-Ghamdi, Abdullah S. AL-Malaise [4 ,5 ,6 ]
Fakieh, Bahjat [4 ]
Choudhry, Hani [2 ,7 ]
Mansour, Romany F. [8 ]
Koundal, Deepika [9 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Artificial Intelligence Precis Med, Jeddah 21589, Saudi Arabia
[3] Al Azhar Univ, Fac Sci, Math Dept, Cairo 11884, Egypt
[4] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Syst Dept, Jeddah 21589, Saudi Arabia
[5] Dar Alhekma Univ, HECI Sch, Informat Syst Dept, Jeddah, Saudi Arabia
[6] King Abdulaziz Univ, Ctr Excellence Smart Environm Res, Jeddah 21589, Saudi Arabia
[7] King Abdulaziz Univ, Fac Sci, Biochem Dept, Jeddah 21589, Saudi Arabia
[8] New Valley Univ, Fac Sci, Dept Math, El-Kharga 72511, Egypt
[9] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun, India
关键词
DIAGNOSIS;
D O I
10.1155/2022/7887908
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microvascular problems of diabetes, such as diabetic retinopathy and macular edema, can be seen in the eye's retina, and the retinal images are being used to screen for and diagnose the illness manually. Using deep learning to automate this time-consuming process might be quite beneficial. In this paper, a deep neural network, i.e., convolutional neural network, has been proposed for predicting diabetes through retinal images. Before applying the deep neural network, the dataset is preprocessed and normalised for classification. Deep neural network is constructed by using 7 layers, 5 kernels, and ReLU activation function, and MaxPooling is implemented to combine important features. Finally, the model is implemented to classify whether the retinal image belongs to a diabetic or nondiabetic class. The parameters used for evaluating the model are accuracy, precision, recall, and F1 score. The implemented model has achieved a training accuracy of more than 95%, which is much better than the other states of the art algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Prediction of Diabetes through Retinal Images Using Deep Neural Network
    Ragab, Mahmoud
    Al-Ghamdi, Abdullah S. Al-Malaise
    Fakieh, Bahjat
    Choudhry, Hani
    Mansour, Romany F.
    Koundal, Deepika
    [J]. Computational Intelligence and Neuroscience, 2022, 2022
  • [2] Microaneurysms and Exudates Detection in Retinal Images using Deep Neural Network
    Maldhure, P. N.
    Ganorkar, S. R.
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02)
  • [3] Retrieving retinal autofluorescence from retinal hyperspectral images using deep neural network analysis
    Phipps, Benjamin
    van Wijngaarden, Peter
    Chen, Christine
    Hadoux, Xavier
    [J]. CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 50 (08): : 962 - 963
  • [4] Automatic Microaneurysms Detection on Retinal Images Using Deep Convolution Neural Network
    Hatanaka, Yuji
    Ogohara, Kazunori
    Sunayama, Wataru
    Miyashita, Mitsuhiro
    Muramatsu, Chisako
    Fujita, Hiroshi
    [J]. 2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT), 2018,
  • [5] Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network
    Ashiquzzaman, Akm
    Tushar, Abdul Kawsar
    Islam, Md. Rashedul
    Shon, Dongkoo
    Im, Kichang
    Park, Jeong-Ho
    Lim, Dong-Sun
    Kim, Jongmyon
    [J]. IT CONVERGENCE AND SECURITY 2017, VOL 1, 2018, 449 : 35 - 43
  • [6] Genetic prediction of type 2 diabetes using deep neural network
    Kim, J.
    Kim, J.
    Kwak, M. J.
    Bajaj, M.
    [J]. CLINICAL GENETICS, 2018, 93 (04) : 822 - 829
  • [7] Pyramidal deep neural network for classification of retinal OCT images
    Almasganj, Mohammad
    Fatemizadeh, Emad
    [J]. 2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 381 - 385
  • [8] Locoregional Recurrence Prediction Using a Deep Neural Network of Radiological and Radiotherapy Images
    Han, Kyumin
    Joung, Joonyoung Francis
    Han, Minhi
    Sung, Wonmo
    Kang, Young-nam
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (02):
  • [9] Arterioles and Venules Classification in Retinal Images Using Fully Convolutional Deep Neural Network
    AlBadawi, Sufian
    Fraz, M. M.
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 659 - 668
  • [10] Deep convolutional neural network for diabetes mellitus prediction
    Suja A. Alex
    J. Jesu Vedha Nayahi
    H. Shine
    Vaisshalli Gopirekha
    [J]. Neural Computing and Applications, 2022, 34 : 1319 - 1327