Bicolored independent sets and bicliques

被引:2
|
作者
Couturier, Jean-Francois [1 ]
Kratsch, Dieter [1 ]
机构
[1] Univ Paul Verlaine Metz, Lab Informat Theor & Appl, F-57045 Metz 01, France
关键词
Graph algorithms; Exact exponential algorithms; Independent set; Biclique; EXACT ALGORITHMS; GENERATION; BIPARTITE;
D O I
10.1016/j.ipl.2012.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the decision problem BICOLORED INDEPENDENT SET which generalizes the well-known NP-complete graph problem INDEPENDENT SET. We present an O(1.2691(n)) time algorithm solving its counting analogue #BICOLORED INDEPENDENT SET. We show how to use this algorithm to establish algorithms solving biclique counting problems and provide an O(1.2691(n)) time algorithm solving *BIPARTITE BICLIQUE and an O(1.6107(n)) time algorithm solving #NON-INDUCED BICLIQUE. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:329 / 334
页数:6
相关论文
共 50 条
  • [1] On Independent Sets and Bicliques in Graphs
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 171 - +
  • [2] On Independent Sets and Bicliques in Graphs
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    ALGORITHMICA, 2012, 62 (3-4) : 637 - 658
  • [3] On Independent Sets and Bicliques in Graphs
    Serge Gaspers
    Dieter Kratsch
    Mathieu Liedloff
    Algorithmica, 2012, 62 : 637 - 658
  • [4] Independent Sets and Hitting Sets of Bicolored Rectangular Families
    Soto, Jose A.
    Telha, Claudio
    ALGORITHMICA, 2021, 83 (06) : 1918 - 1952
  • [5] Independent Sets and Hitting Sets of Bicolored Rectangular Families
    José A. Soto
    Claudio Telha
    Algorithmica, 2021, 83 : 1918 - 1952
  • [6] INDEPENDENT SETS IN THE NEIGHBORHOOD SYSTEMS OF BALANCED BICLIQUES: OPTIMIZATION AND POLYNOMIAL REPRESENTATIONS
    Artes, Rosalio G., Jr.
    Rasid, Regimar A.
    Rasid, Sherna A.
    Amiruddin-Rajik, Bayah J.
    Abubakar, Al-Jayson U.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (01): : 97 - 104
  • [7] On the coarseness of bicolored point sets
    Bereg, S.
    Diaz-Banez, J. M.
    Lara, D.
    Perez-Lantero, P.
    Seara, C.
    Urrutia, J.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (01): : 65 - 77
  • [8] On edge-sets of bicliques in graphs
    Groshaus, Marina
    Hell, Pavol
    Stacho, Juraj
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2698 - 2708
  • [9] New results on the coarseness of bicolored point sets
    Diaz-Banez, J. M.
    Fabila-Monroy, R.
    Perez-Lantero, P.
    Ventura, I.
    INFORMATION PROCESSING LETTERS, 2017, 123 : 1 - 7
  • [10] Long alternating paths in bicolored point sets
    Kyncl, J
    Pach, J
    Tóth, G
    GRAPH DRAWING, 2004, 3383 : 340 - 348