On the p-adic denseness of the quotient set of a polynomial image

被引:8
|
作者
Miska, Piotr [1 ]
Murru, Nadir [2 ]
Sanna, Carlo [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
[2] Univ Torino, Dept Math, Turin, Italy
关键词
Denseness; p-adic numbers; Polynomials; Quotient set; Sum of powers;
D O I
10.1016/j.jnt.2018.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quotient set, or ratio set, of a set of integers A is defined as R(A) := {a/b : a,b is an element of A, b not equal 0}. We consider the case in which A is the image of Z(+) under a polynomial f is an element of Z[X], and we give some conditions under which R(A) is dense in Q(p) . Then, we apply these results to determine when R(S-m(n)) is dense in Q(p), where S-m(n) is the set of numbers of the form x(1)(n) + . . . + x(m)(n), with x(1), . . . , x(m )>= 0 integers. This allows us to answer a question posed in Garcia et al. (2017) [5]. We end leaving an open question. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 50 条
  • [1] p-adic quotient sets
    Garcia, Stephan Ramon
    Hong, Yu Xuan
    Luca, Florian
    Pinsker, Elena
    Sanna, Carlo
    Schechter, Evan
    Starr, Adam
    ACTA ARITHMETICA, 2017, 179 (02) : 163 - 184
  • [2] A note on p-adic denseness of quotients of values of quadratic forms
    Miska, Piotr
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (03): : 639 - 645
  • [3] p-Adic Denseness of Members of Partitions of Nand Their Ratio Sets
    Miska, Piotr
    Sanna, Carlo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1127 - 1133
  • [4] On a p-adic Julia set
    Dremov, VA
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1194 - 1195
  • [5] p-adic quotient sets: diagonal forms
    Antony, Deepa
    Barman, Rupam
    Miska, Piotr
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 461 - 470
  • [6] p-adic quotient sets: cubic forms
    Antony, Deepa
    Barman, Rupam
    ARCHIV DER MATHEMATIK, 2022, 118 (02) : 143 - 149
  • [7] p-adic quotient sets: cubic forms
    Deepa Antony
    Rupam Barman
    Archiv der Mathematik, 2022, 118 : 143 - 149
  • [8] p-adic quotient sets: diagonal forms
    Deepa Antony
    Rupam Barman
    Piotr Miska
    Archiv der Mathematik, 2022, 119 : 461 - 470
  • [9] LANGLANDS QUOTIENT THEOREM FOR P-ADIC GROUPS
    SILBERGER, AJ
    MATHEMATISCHE ANNALEN, 1978, 236 (02) : 95 - 104
  • [10] ON THE P-ADIC INTEGRAL OF AN EXPONENTIAL POLYNOMIAL
    EVEREST, GR
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 334 - 340