Spectrophotometric properties of materials from the Mars Science Laboratory at Gale crater: 1. Bradbury Landing to Cooperstown

被引:2
|
作者
Johnson, Jeffrey R. [1 ]
Grundy, William M. [2 ]
Lemmon, Mark T. [3 ]
Liang, W. [4 ]
Bell III, James F. [5 ]
Hayes, A. G. [6 ]
Deen, R. G. [7 ]
机构
[1] Johns Hopkins Univ Appl Phys Lab, Laurel, MD 20723 USA
[2] Lowell Observ, Flagstaff, AZ USA
[3] Space Sci Inst, Boulder, CO USA
[4] Lunar & Planetary Lab, Tucson, AZ USA
[5] Arizona State Univ, Tempe, AZ USA
[6] Cornell Univ, Ithaca, NY USA
[7] Jet Prop Lab, Pasadena, CA USA
关键词
Photometry; Multispectral; Mars; Spectroscopy; Curiosity; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; PHOTOMETRIC PROPERTIES; WAVELENGTH DEPENDENCE; SCATTERING PROPERTIES; SURFACE REFLECTANCE; EXPLORATION ROVERS; LIGHT-SCATTERING; MARTIAN ATMOSPHERE; ENDEAVOR CRATER; IMAGE-ANALYSIS;
D O I
10.1016/j.pss.2022.105563
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
During the first 443 martian days (sols) of the Mars Science Laboratory (MSL) Curiosity rover mission, visible/ near-infrared (445-1012 nm) multispectral observations were acquired at different times of sol by the Mast Camera (Mastcam) and Navigation Camera (Navcam) at five locations along the traverse. Measurements of soil, dust, and rock units spanned sufficient incidence, emission, and phase angles to enable radiative transfer models to constrain the surface scattering functions, single-scattering albedo (w), and microphysical properties of the units at each site. Although the model results were mainly consistent with previous results from other landing sites, there were some notable exceptions. For example, the less dusty "Blue rocks" units were modeled as more backscattering compared to ostensibly dustier "Red rocks" units, which was opposite to results from other landed missions. Relations between the peak phase angle of phase curve ratios, w values, and macroscopic roughness (theta) suggested that unlike most of the materials observed by the Spirit and Opportunity rovers, the effects of particle -scale roughness and internal scattering were a greater influence on MSL units than surface scattering. Also noteworthy were unique photometric signatures modeled from data acquired at the landing site on Sol 20 as part of the first in situ spectrophotometric analyses of materials subjected to erosion and/or surface dust removal from spacecraft descent engines. Modeled w spectra were relatively flat and dark for the Sol 20 Blue rocks unit and were positively correlated with average theta values, similar to some laboratory studies of coarse-grained and/or glassy mafic materials. While low w values and backscattering behaviors were modeled for the Sol 20 "Regolith" unit, the more heavily scoured, lighter-toned regions included soils with extremely forward scattering behaviors, large w values, and that lacked ferric absorption features. The absence of phase reddening effects in all the Sol 20 units likely also was caused by surface disruptions during the landing. Future analyses of additional spectro-photometric data sets from both Curiosity and the Mars 2020 Perseverance rover will continue to yield important comparisons among the variable scattering properties of martian geologic units.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest
    Bridges, N. T.
    Calef, F. J.
    Hallet, B.
    Herkenhoff, K. E.
    Lanza, N. L.
    Le Mouelic, S.
    Newman, C. E.
    Blaney, D. L.
    de Pablo, M. A.
    Kocurek, G. A.
    Langevin, Y.
    Lewis, K. W.
    Mangold, N.
    Maurice, S.
    Meslin, P. -Y.
    Pinet, P.
    Renno, N. O.
    Rice, M. S.
    Richardson, M. E.
    Sautter, V.
    Sletten, R. S.
    Wiens, R. C.
    Yingst, R. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (06) : 1374 - 1389
  • [2] Gale crater: the Mars Science Laboratory/Curiosity Rover Landing Site
    Wray, James J.
    [J]. INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2013, 12 (01) : 25 - 38
  • [3] Abundance retrieval of hydrous minerals around the Mars Science Laboratory landing site in Gale crater, Mars
    Lin, Honglei
    Zhang, Xia
    Shuai, Tong
    Zhang, Lifu
    Sun, Yanli
    [J]. PLANETARY AND SPACE SCIENCE, 2016, 121 : 76 - 82
  • [4] Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars
    Morrison, Shaunna M.
    Downs, Robert T.
    Blake, David F.
    Vaniman, David T.
    Ming, Douglas W.
    Hazen, Robert M.
    Treiman, Allan H.
    Achilles, Cherie N.
    Yen, Albert S.
    Morris, Richard V.
    Rampe, Elizabeth B.
    Bristow, Thomas F.
    Chipera, Steve J.
    Sarrazin, Philippe C.
    Gellert, Ralf
    Fendrich, Kim V.
    Morookian, John Michael
    Farmer, Jack D.
    Marais, David J. Des
    Craig, Patricia I.
    [J]. AMERICAN MINERALOGIST, 2018, 103 (06) : 857 - 871
  • [5] Elemental Composition and Chemical Evolution of Geologic Materials in Gale Crater, Mars: APXS Results From Bradbury Landing to the Vera Rubin Ridge
    Berger, Jeff A.
    Gellert, Ralf
    Boyd, Nicholas I.
    King, Penelope L.
    McCraig, Michael A.
    O'Connell-Cooper, Catherine D.
    Schmidt, Mariek E.
    Spray, John G.
    Thompson, Lucy M.
    VanBommel, Scott J. V.
    Yen, Albert S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (12)
  • [6] Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars
    Thomas, N. H.
    Ehlmann, B. L.
    Meslin, P. -Y.
    Rapin, W.
    Anderson, D. E.
    Rivera-Hernandez, F.
    Forni, O.
    Schroeder, S.
    Cousin, A.
    Mangold, N.
    Gellert, R.
    Gasnault, O.
    Wiens, R. C.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (19) : 10754 - 10763
  • [7] Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars
    Rice, Melissa S.
    Gupta, Sanjeev
    Treiman, Allan H.
    Stack, Kathryn M.
    Calef, Fred
    Edgar, Lauren A.
    Grotzinger, John
    Lanza, Nina
    Le Deit, Laetitia
    Lasue, Jeremie
    Siebach, Kirsten L.
    Vasavada, Ashwin
    Wiens, Roger C.
    Williams, Joshua
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2017, 122 (01) : 2 - 20
  • [8] Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond
    Vasavada, A. R.
    Grotzinger, J. P.
    Arvidson, R. E.
    Calef, F. J.
    Crisp, J. A.
    Gupta, S.
    Hurowitz, J.
    Mangold, N.
    Maurice, S.
    Schmidt, M. E.
    Wiens, R. C.
    Williams, R. M. E.
    Yingst, R. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (06) : 1134 - 1161
  • [9] ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars
    Maurice, S.
    Clegg, S. M.
    Wiens, R. C.
    Gasnault, O.
    Rapin, W.
    Forni, O.
    Cousin, A.
    Sautter, V.
    Mangold, N.
    Le Deit, L.
    Nachon, M.
    Anderson, R. B.
    Lanza, N. L.
    Fabre, C.
    Payre, V.
    Lasue, J.
    Meslin, P. -Y.
    Leveille, R. J.
    Barraclough, L.
    Beck, P.
    Bender, S. C.
    Berger, G.
    Bridges, J. C.
    Bridges, N. T.
    Dromart, G.
    Dyar, M. D.
    Francis, R.
    Frydenvang, J.
    Gondet, B.
    Ehlmann, B. L.
    Herkenhoff, K. E.
    Johnson, J. R.
    Langevin, Y.
    Madsen, M. B.
    Melikechi, N.
    Lacour, J. -L.
    Le Mouelic, S.
    Lewin, E.
    Newsom, H. E.
    Ollila, A. M.
    Pinet, P.
    Schroeder, S.
    Sirven, J. -B.
    Tokar, R. L.
    Toplis, M. J.
    d'Uston, C.
    Vaniman, D. T.
    Vasavada, A. R.
    [J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2016, 31 (04) : 863 - 889
  • [10] X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater
    Bish, D. L.
    Blake, D. F.
    Vaniman, D. T.
    Chipera, S. J.
    Morris, R. V.
    Ming, D. W.
    Treiman, A. H.
    Sarrazin, P.
    Morrison, S. M.
    Downs, R. T.
    Achilles, C. N.
    Yen, A. S.
    Bristow, T. F.
    Crisp, J. A.
    Morookian, J. M.
    Farmer, J. D.
    Rampe, E. B.
    Stolper, E. M.
    Spanovich, N.
    [J]. SCIENCE, 2013, 341 (6153)