CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data

被引:69
|
作者
Tian, Liqing [1 ]
Li, Yongjin [1 ]
Edmonson, Michael N. [1 ]
Zhou, Xin [1 ]
Newman, Scott [1 ]
McLeod, Clay [1 ]
Thrasher, Andrew [1 ]
Liu, Yu [1 ,2 ]
Tang, Bo [3 ]
Rusch, Michael C. [1 ]
Easton, John [1 ]
Ma, Jing [3 ]
Davis, Eric [1 ]
Trull, Austyn [1 ]
Michael, J. Robert [1 ]
Szlachta, Karol [1 ]
Mullighan, Charles [3 ]
Baker, Suzanne J. [4 ]
Downing, James R. [3 ]
Ellison, David W. [3 ]
Zhang, Jinghui [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Computat Biol, 262 Danny Thomas Pl, Memphis, TN 38105 USA
[2] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Pediat Translat Med Inst, Shanghai, Peoples R China
[3] St Jude Childrens Res Hosp, Dept Pathol, 262 Danny Thomas Pl, Memphis, TN 38105 USA
[4] St Jude Childrens Res Hosp, Dept Dev Neurobiol, 262 Danny Thomas Pl, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
Gene fusion; Precision oncology; Fusion visualization; RNA-seq; Cloud computing; GENE FUSIONS; TANDEM DUPLICATION; GENOMIC LANDSCAPE; REARRANGEMENT; MUTANTS; KINASE;
D O I
10.1186/s13059-020-02043-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 independently validated driver fusions including internal tandem duplications and other non-canonical events in 170 pediatric cancer transcriptomes. Re-analysis of TCGA glioblastoma RNA-seq unveils previously unreported kinase fusions (KLHL7-BRAF) and a 13% prevalence of EGFR C-terminal truncation. Accessible via standard or cloud-based implementation, CICERO enhances driver fusion detection for research and precision oncology. The CICERO source code is available at https://github.com/stjude/Cicero.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
    Liqing Tian
    Yongjin Li
    Michael N. Edmonson
    Xin Zhou
    Scott Newman
    Clay McLeod
    Andrew Thrasher
    Yu Liu
    Bo Tang
    Michael C. Rusch
    John Easton
    Jing Ma
    Eric Davis
    Austyn Trull
    J. Robert Michael
    Karol Szlachta
    Charles Mullighan
    Suzanne J. Baker
    James R. Downing
    David W. Ellison
    Jinghui Zhang
    Genome Biology, 21
  • [2] CICERO: An accurate method for detecting complex and diverse driver fusions using cancer transcriptome sequencing (RNA-seq) data
    Tian, Liqing
    Li, Yongjin
    Edmonson, Michael N.
    Zhou, Xin
    Newman, Scott
    McLeod, Clay
    Liu, Yu
    Tang, Bo
    Rusch, Michael C.
    Easton, John
    Ma, Jing
    Trull, Austyn
    Michael, J. Robert
    Thrasher, Andrew
    Mullighan, Charles
    Baker, Suzanne J.
    Downing, James R.
    Ellison, David W.
    Zhang, Jinghui
    CANCER RESEARCH, 2020, 80 (16)
  • [3] An integrative approach to reveal driver gene fusions from paired end sequencing data in cancer
    Wang, Xiaosong
    Prensner, John R.
    Chen, Guoan
    Cao, Qi
    Han, Bo
    Dhanasekaran, Saravana M.
    Ponnala, Rakesh
    Beer, David G.
    Palanisamy, Nallasivam
    Sailor, Maureen
    Omenn, Gilbert S.
    Chinnaiyan, Arul M.
    CANCER RESEARCH, 2010, 70
  • [4] An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer
    Wang, Xiao-Song
    Prensner, John R.
    Chen, Guoan
    Cao, Qi
    Han, Bo
    Dhanasekaran, Saravana M.
    Ponnala, Rakesh
    Cao, Xuhong
    Varambally, Sooryanarayana
    Thomas, Dafydd G.
    Giordano, Thomas J.
    Beer, David G.
    Palanisamy, Nallasivam
    Sartor, Maureen A.
    Omenn, Gilbert S.
    Chinnaiyan, Arul M.
    NATURE BIOTECHNOLOGY, 2009, 27 (11) : 1005 - U73
  • [5] An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer
    Xiao-Song Wang
    John R Prensner
    Guoan Chen
    Qi Cao
    Bo Han
    Saravana M Dhanasekaran
    Rakesh Ponnala
    Xuhong Cao
    Sooryanarayana Varambally
    Dafydd G Thomas
    Thomas J Giordano
    David G Beer
    Nallasivam Palanisamy
    Maureen A Sartor
    Gilbert S Omenn
    Arul M Chinnaiyan
    Nature Biotechnology, 2009, 27 : 1005 - 1011
  • [6] OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA Sequencing Data
    Brechtmann, Felix
    Mertes, Christian
    Matuseviciute, Agne
    Yepez, Vicente A.
    Avsec, Ziga
    Herzog, Maximilian
    Bader, Daniel M.
    Prokisch, Holger
    Gagneur, Julien
    AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (06) : 907 - 917
  • [7] A balanced method detecting differentially expressed genes for RNA-sequencing data
    Tang, Jinyang
    Wang, Fei
    IFAC PAPERSONLINE, 2015, 48 (28): : 27 - 32
  • [8] Robustly detecting differential expression in RNA sequencing data using observation weights
    Zhou, Xiaobei
    Lindsay, Helen
    Robinson, Mark D.
    NUCLEIC ACIDS RESEARCH, 2014, 42 (11)
  • [9] ARDE: Detecting selectively expressed cancer driver mutations through integration of exome and transcriptome sequencing data
    Wang, Fang
    Zhang, Shaojun
    Chen, Yiwen
    Hart, Traver
    Shaw, Kenna
    Meric-Bernstam, Funda
    Mills, Gordon
    Chen, Ken
    CANCER RESEARCH, 2018, 78 (13)
  • [10] Cancer Survival Analysis using RNA Sequencing and Clinical Data
    Clayman, Carly L.
    Srinivasan, Satish M.
    Sangwan, Raghvinder S.
    COMPLEX ADAPTIVE SYSTEMS, 2020, 168 : 80 - 87