Daily temperature and precipitation data since 1960 are selected from 735 weather stations that are scattered over China. After comparatively analyzing relative interpolation methods, gradient-plus-inverse distance squared (GIDS) is selected to create temperature surfaces and Kriging interpolation method is selected to create precipitation surfaces. Digital elevation model of China is combined into Holdridge Life Zone (HLZ) model oil the basis of simulating relationships between temperature and elevation in different regions of China. HLZ model is operated oil the created temperature and precipitation surfaces in ARC/ INFO environment. Spatial pattern of major terrestrial ecosystems in China and its change in the four decades of 1960s, 1970s, 1980s and 1990s are analyzed in terms of results from operating HLZ model. The results show that HLZ spatial pattern in China has had a great change since 1960. For instance, nival area and subtropical thorn woodland had a rapid decrease oil all average and they might disappear in 159 years and 96 years, respectively, if their areas would decrease at present rate. Alpine dry tundra and cool temperate scrub continuously increased in the four decades and the decadal increase rates are, respectively, 13.1% and 3.4%. HLZ patch connectivity has a continuous increase trend and HLZ diversity has a continuous decrease trend on the average, Warm temperate thorn steppe, subtropical wet forest and cool temperate wet forest shifted 1781.45 km, 1208.14 km and 977.43 km in the four decades, respectively. These HLZ types are more sensitive to climate change than other ones. These changes reflect the great effects of climate change oil terrestrial ecosystems in China. (c) 2005 Elsevier B.V. All rights reserved.