Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations

被引:41
|
作者
Brizard, Alain J. [1 ]
Tronko, Natalia [2 ,3 ]
机构
[1] St Michaels Coll, Dept Chem & Phys, Colchester, VT 05439 USA
[2] Ctr Phys Theor, F-13288 Marseille 9, France
[3] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
plasma kinetic theory; plasma nonlinear processes; plasma toroidal confinement; plasma transport processes; Poisson equation; Tokamak devices; Vlasov equation; GUIDING-CENTER; VARIATIONAL PRINCIPLE; ANGULAR-MOMENTUM; MAXWELL-VLASOV; ENERGY;
D O I
10.1063/1.3625554
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The exact momentum conservation laws for the nonlinear gyrokinetic Vlasov-Poisson equations are derived by applying the Noether method on the gyrokinetic variational principle [A. J. Brizard, Phys. Plasmas 7, 4816 (2000)]. From the gyrokinetic Noether canonical-momentum equation derived by the Noether method, the gyrokinetic parallel momentum equation and other gyrokinetic Vlasov-moment equations are obtained. In addition, an exact gyrokinetic toroidal angular-momentum conservation law is derived in axisymmetric tokamak geometry, where the transport of parallel-toroidal momentum is related to the radial gyrocenter polarization, which includes contributions from the guiding-center and gyrocenter transformations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3625554]
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A variational sheath model for stationary gyrokinetic Vlasov-Poisson equations
    Badsi, Mehdi
    Campos-Pinto, Martin
    Despres, Bruno
    Godard-Cadillac, Ludovic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (06) : 2609 - 2642
  • [2] The gyrokinetic approximation for the Vlasov-Poisson system
    Saint-Raymond, L
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (09): : 1305 - 1332
  • [3] A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system
    Manzini, G.
    Delzanno, G. L.
    Vencels, J.
    Markidis, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 317 : 82 - 107
  • [4] On higher order corrections to gyrokinetic Vlasov-Poisson equations in the long wavelength limit
    Lee, W. W.
    Kolesnikov, R. A.
    PHYSICS OF PLASMAS, 2009, 16 (04)
  • [5] EXACT TIME-DEPENDENT SOLUTIONS OF THE VLASOV-POISSON EQUATIONS
    SYMON, KR
    LEWIS, HR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 844 - 844
  • [6] EXACT TIME-DEPENDENT SOLUTIONS OF THE VLASOV-POISSON EQUATIONS
    LEWIS, HR
    SYMON, KR
    PHYSICS OF FLUIDS, 1984, 27 (01) : 192 - 196
  • [7] The gyrokinetic limit for the Vlasov-Poisson system with a point charge
    Miot, Evelyne
    NONLINEARITY, 2019, 32 (02) : 654 - 677
  • [8] SYMMETRIZATION OF VLASOV-POISSON EQUATIONS
    Despres, Bruno
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 2554 - 2580
  • [9] THE ENERGY CONSERVATION OF VLASOV-POISSON SYSTEMS
    Wu, Jingpeng
    Zhang, Xianwen
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 668 - 674
  • [10] THE ENERGY CONSERVATION OF VLASOV-POISSON SYSTEMS
    吴景鹏
    张显文
    ActaMathematicaScientia, 2023, 43 (02) : 668 - 674