Branch-and-cut and hybrid local search for the multi-level capacitated minimum spanning tree problem

被引:3
|
作者
Uchoa, Eduardo [1 ]
Toffolo, Tulio A. M. [2 ]
de Souza, Mauricio C. [3 ]
Martins, Alexandre X. [4 ]
Fukasawa, Ricardo [5 ]
机构
[1] Univ Fed Fluminense, Dept Prod Engn, Niteroi, RJ, Brazil
[2] Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
[3] Univ Fed Minas Gerais, Dept Prod Engn, Belo Horizonte, MG, Brazil
[4] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, Joao Monlevade, MG, Brazil
[5] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
network design; branch-and-cut; fenchel cuts; MIP based local search; FENCHEL CUTTING PLANES; FORMULATION; ALGORITHM;
D O I
10.1002/net.20485
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose algorithms to compute tight lower bounds and high quality upper bounds (UBs) for the multilevel capacitated minimum spanning tree problem. We first develop a branch-and-cut algorithm, introducing some new features: (i) the exact separation of cuts corresponding to some master equality polyhedra found in the formulation; (ii) the separation of Fenchel cuts, solving LPs considering all the possible solutions restricted to small portions of the graph. We then use that branch-and-cut within a GRASP that performs moves by solving to optimality subproblems corresponding to partial solutions. The computational experiments were conducted on 450 benchmark instances from the literature. Numerical results show improved best known (UBs) for almost all instances that could not be solved to optimality. (C) 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 59(1), 148-160 2012
引用
收藏
页码:148 / 160
页数:13
相关论文
共 50 条
  • [1] Heuristics for the multi-level capacitated minimum spanning tree problem
    Pappas, Christos A.
    Anadiotis, Angelos-Christos G.
    Papagianni, Chrysa A.
    Venieris, Iakovos S.
    OPTIMIZATION LETTERS, 2014, 8 (02) : 435 - 446
  • [2] Heuristics for the multi-level capacitated minimum spanning tree problem
    Christos A. Pappas
    Angelos-Christos G. Anadiotis
    Chrysa A. Papagianni
    Iakovos S. Venieris
    Optimization Letters, 2014, 8 : 435 - 446
  • [3] A branch-and-cut algorithm for the minimum branch vertices spanning tree problem
    Silvestri, Selene
    Laporte, Gilbert
    Cerulli, Raffaele
    COMPUTERS & OPERATIONS RESEARCH, 2017, 81 : 322 - 332
  • [4] An evolutionary approach to the multi-level capacitated minimum spanning tree problem
    Gamvros, I
    Raghavan, S
    Golden, B
    TELECOMMUNICATIONS NETWORK DESIGN AND MANAGEMENT, 2003, 23 : 99 - 124
  • [5] GRASP with hybrid heuristic-subproblem optimization for the multi-level capacitated minimum spanning tree problem
    Alexandre X. Martins
    Mauricio C. de Souza
    Marcone J. F. Souza
    Túlio A. M. Toffolo
    Journal of Heuristics, 2009, 15 : 133 - 151
  • [6] GRASP with hybrid heuristic-subproblem optimization for the multi-level capacitated minimum spanning tree problem
    Martins, Alexandre X.
    de Souza, Mauricio C.
    Souza, Marcone J. F.
    Toffolo, Tulio A. M.
    JOURNAL OF HEURISTICS, 2009, 15 (02) : 133 - 151
  • [7] The Generalized Minimum Spanning Tree Problem:: Polyhedral analysis and branch-and-cut algorithm
    Feremans, C
    Labbé, M
    Laporte, G
    NETWORKS, 2004, 43 (02) : 71 - 86
  • [8] Branch-and-cut and Branch-and-cut-and-price algorithms for the adjacent only quadratic minimum spanning tree problem
    Pereira, Dilson Lucas
    Gendreau, Michel
    da Cunha, Alexandre Salles
    NETWORKS, 2015, 65 (04) : 367 - 379
  • [9] A branch-and-cut approach for minimum cost multi-level network design
    Chopra, S
    Tsai, CY
    DISCRETE MATHEMATICS, 2002, 242 (1-3) : 65 - 92
  • [10] The minimum area spanning tree problem: Formulations, Benders decomposition and branch-and-cut algorithms
    Guimaraes, Dilson Almeida
    da Cunha, Alexandre Salles
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 97