Conformal metric sequences with integral-bounded scalar curvature

被引:4
|
作者
Li, Yuxiang [1 ]
Zhou, Zhipeng [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
YAMABE PROBLEM; HARMONIC MAPS; COMPACTNESS; RECTIFIABILITY; MANIFOLDS; FLOWS;
D O I
10.1007/s00209-020-02533-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ( M, g) be a smooth compact Riemiannian manifold without boundary and g(k) be a metric conformal to g. Suppose vol(M, g(k)) + parallel to R-k parallel to L-p(M, g(k)) < C, where R-k is the scalar curvature and p > n/2. We will use the 3-circles theorem to study the bubble tree convergence of g(k)
引用
收藏
页码:1443 / 1473
页数:31
相关论文
共 50 条