DIMENSION COUNTS FOR CUSPIDAL RATIONAL CURVES VIA SEMIGROUPS

被引:2
|
作者
Cotterill, Ethan [1 ]
Feital, Lia [2 ]
Martins, Renato Vidal [3 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
[2] Univ Fed Vicosa, CCE, Dept Matemat, Av PH Rolfs S-N, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Minas Gerais, ICEx, Dept Matemat, Av Antonio Carlos 6627, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Linear series; rational curves; singular curves; semigroups; NUMERICAL SEMIGROUPS; NUMBER; SPACES; CUSPS;
D O I
10.1090/proc/15062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study cuspidal rational curves in projective space, deducing conditions on their parameterizations from the value semigroups S of their singularities. We prove that a natural heuristic based on nodal curves for the codimension of the space of nondegenerate rational curves of arithmetic genus g > 0 and degree d in P-n, viewed as a subspace of all degree-d rational curves in P-n, holds whenever g is small. On the other hand, we show that this heuristic fails in general, by exhibiting an infinite family of examples of Severitype varieties of rational curves containing "excess" components of dimension strictly larger than the space of g-nodal rational curves.
引用
收藏
页码:3217 / 3231
页数:15
相关论文
共 50 条
  • [1] Enumeration of Rational Cuspidal Curves via the WDVV Equation
    Biswas, Indranil
    Choudhury, Apratim
    Mukherjee, Ritwik
    Paul, Anantadulal
    EXPERIMENTAL MATHEMATICS, 2025,
  • [2] THE DEGREE OF RATIONAL CUSPIDAL CURVES
    MATSUOKA, T
    SAKAI, F
    MATHEMATISCHE ANNALEN, 1989, 285 (02) : 233 - 247
  • [3] ON THE FREENESS OF RATIONAL CUSPIDAL PLANE CURVES
    Dimca, Alexandru
    Sticlaru, Gabriel
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (04) : 659 - 666
  • [4] On rigid rational cuspidal plane curves
    Zaidenberg, MG
    Orevkov, SY
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (01) : 179 - 180
  • [5] On rational cuspidal projective plane curves
    De Bobadilla, JF
    Luengo-Velasco, I
    Melle-Hernández, A
    Némethi, A
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 : 99 - 138
  • [6] On a class of rational cuspidal plane curves
    Flenner, H
    Zaidenberg, M
    MANUSCRIPTA MATHEMATICA, 1996, 89 (04) : 439 - 459
  • [7] WEIERSTRASS POINTS ON RATIONAL CUSPIDAL CURVES
    LAX, RF
    WIDLAND, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2A (01): : 65 - 71
  • [8] Lattice cohomology and rational cuspidal curves
    Bodnar, Jozsef
    Nemethi, Andras
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (02) : 339 - 375
  • [9] The symplectic isotopy problem for rational cuspidal curves
    Golla, Marco
    Starkston, Laura
    COMPOSITIO MATHEMATICA, 2022, 158 (07) : 1595 - 1682
  • [10] On rational cuspidal curves I. Sharp estimate for degree via multiplicities
    S.Yu. Orevkov
    Mathematische Annalen, 2002, 324 : 657 - 673