The Onset of Chaos via Asymptotically Period-Doubling Cascade in Fractional Order Lorenz System

被引:2
|
作者
Lin, Xiaofang [1 ]
Liao, Binghui [1 ]
Zeng, Caibin [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lorenz system; fractional calculus; chaotification; bifurcation; Lyapunov exponent; MITTAG-LEFFLER LAWS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; EXPONENTIAL DECAY; STABILITY; EXISTENCE; ATTRACTOR; DYNAMICS;
D O I
10.1142/S0218127417502078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Little seems to be known about the chaotification problem in the framework of fractional order nonlinear systems. Based on the negative damping instability mechanism and fractional calculus technique, this paper reports the onset of chaos in fractional order Lorenz system with periodic system parameters via asymptotically period-doubling cascade. To further understand the complex dynamics of the system, some basic properties such as the largest Lyapunov exponents, bifurcation diagram, routes to chaos, asymptotically periodic windows, possible chaotic and asymptotically periodic window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations. Of particular interest is a striking finding that fractional derivative can chaotify the globally stable periodic system without feedback control.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fibonacci order in the period-doubling cascade to chaos
    Linage, G.
    Montoya, Femando
    Sarmiento, A.
    Showalter, K.
    Parmananda, P.
    PHYSICS LETTERS A, 2006, 359 (06) : 638 - 639
  • [2] A period-doubling cascade precedes chaos for planar maps
    Sander, Evelyn
    Yorke, James A.
    CHAOS, 2013, 23 (03)
  • [3] UNIVERSALITY OF FRACTAL DIMENSION AT THE ONSET OF PERIOD-DOUBLING CHAOS
    AGARWAL, AK
    BANERJEE, K
    BHATTACHARJEE, JK
    PHYSICS LETTERS A, 1986, 119 (06) : 280 - 282
  • [4] PERIOD-DOUBLING CASCADE AND CHAOS IN YIG AT THE 1ST-ORDER SUHL INSTABILITY
    MITSUDO, S
    MINO, M
    YAMAZAKI, H
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1992, 104 : 1057 - 1058
  • [5] Optimized Fuzzy Fractional-order Controller for a Nonlinear Chaos System With Period-doubling Bifurcation Analysis
    Eman Moustafa
    Belal Abou-Zalam
    Abdel-Azem Sobaih
    Essam Nabil
    Amged Sayed
    International Journal of Control, Automation and Systems, 2023, 21 : 3492 - 3503
  • [6] Optimized Fuzzy Fractional-order Controller for a Nonlinear Chaos System With Period-doubling Bifurcation Analysis
    Moustafa, Eman
    Abou-Zalam, Belal
    Sobaih, Abdel-Azem
    Nabil, Essam
    Sayed, Amged
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (10) : 3492 - 3503
  • [7] Period-Doubling Bifurcation of Stochastic Fractional-Order Duffing System via Chebyshev Polynomial Approximation
    Lei, Youming
    Wang, Yanyan
    SHOCK AND VIBRATION, 2017, 2017
  • [8] TEMPORAL CHAOS VIA PERIOD-DOUBLING ROUTE IN SINE-GORDON SYSTEM
    TAKI, M
    SPATSCHEK, KH
    JOURNAL DE PHYSIQUE, 1989, 50 (C-3): : 77 - 84
  • [9] CHAOS AND PERIOD-DOUBLING BIFURCATIONS IN A SIMPLE ACOUSTIC SYSTEM
    KITANO, M
    YABUZAKI, T
    OGAWA, T
    PHYSICAL REVIEW LETTERS, 1983, 50 (10) : 713 - 716
  • [10] Temporal chaos via period-doubling route in Sine-Gordon system
    1600, Publ by Editions de Physique, Les Ulis, Fr (C3):