RELAXATION LIMIT AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF COMPRESSIBLE EULER-MAXWELL EQUATIONS

被引:60
|
作者
Peng, Yue-Jun [1 ]
Wang, Shu [2 ]
Gu, Qilong [3 ]
机构
[1] CNRS, Math Lab, UMR 6620, F-63171 Aubiere, France
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Euler-Maxwell equations; drift-diffusion equations; zero-relaxation limit; global existence of smooth solutions; DISSIPATIVE HYPERBOLIC SYSTEMS; QUASI-NEUTRAL LIMIT; HYDRODYNAMIC MODEL; POISSON SYSTEM; CONVEX ENTROPY; TIME LIMITS; SEMICONDUCTORS; CONVERGENCE; PLASMAS; PARAMETERS;
D O I
10.1137/100786927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider smooth periodic solutions for the Euler-Maxwell equations, which are a symmetrizable hyperbolic system of balance laws. We proved that as the relaxation time tends to zero, the Euler-Maxwell system converges to the drift-diffusion equations at least locally in time. The global existence of smooth solutions is established near a constant state with an asymptotic stability property.
引用
下载
收藏
页码:944 / 970
页数:27
相关论文
共 50 条
  • [1] Compressible Euler-Maxwell limit for global smooth solutions to the Vlasov-Maxwell-Boltzmann system
    Duan, Renjun
    Yang, Dongcheng
    Yu, Hongjun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (10): : 2157 - 2221
  • [2] The relaxation-time limit in the compressible Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Zhao, Juan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7005 - 7011
  • [3] GLOBAL CLASSICAL SOLUTIONS TO THE COMPRESSIBLE EULER-MAXWELL EQUATIONS
    Xu, Jiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2688 - 2718
  • [4] Global existence of classical solutions of full Euler-Maxwell equations
    Xu, Jiang
    Xiong, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 545 - 557
  • [5] Compressible Euler-Maxwell equations
    Chen, GQ
    Jerome, JW
    Wang, DH
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5): : 311 - 331
  • [6] GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE
    Duan, Renjun
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) : 375 - 413
  • [7] Diffusive relaxation limits of compressible Euler-Maxwell equations
    Xu, Jiang
    Xu, Qingrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 135 - 148
  • [8] INCOMPRESSIBLE TYPE EULER AS SCALING LIMIT OF COMPRESSIBLE EULER-MAXWELL EQUATIONS
    Yang, Jianwei
    Lian, Ruxu
    Wang, Shu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 503 - 518
  • [9] Hydrodynamic limit of the Maxwell-Schrδdinger equations to the compressible Euler-Maxwell equations
    Kim, Jeongho
    Moon, Bora
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 397 : 34 - 54
  • [10] Asymptotic Stability of Stationary Solutions to the Compressible Euler-Maxwell Equations
    Liu, Qingqing
    Zhu, Changjiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) : 1203 - 1235