PERIODIC AND QUASI-PERIODIC ORBITS OF THE DISSIPATIVE STANDARD MAP

被引:5
|
作者
Celletti, Alessandra [1 ]
Di Ruzza, Sara [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
来源
关键词
Dissipative standard map; Periodic orbits; Arnold's tongues;
D O I
10.3934/dcdsb.2011.16.151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present analytical and numerical investigations of the dynamics of the dissipative standard map. We first study the existence of periodic orbits by using a constructive version of the implicit function theorem; then, we introduce a parametric representation, which provides the interval of the drift parameter ensuring the existence of a periodic orbit with a given period. The determination of quasi periodic attractors is efficiently obtained using the parametric representation combined with a Newton's procedure, aimed to reduce the error of the approximate solution provided by the parametric representation. These methods allow us to relate the drift parameter of the periodic orbits to that of the invariant attractors, as well as to constrain the drift of a periodic orbit within Arnold's tongues in the parameter space.
引用
收藏
页码:151 / 171
页数:21
相关论文
共 50 条
  • [1] Periodic and Quasi-Periodic Orbits¶for the Standard Map
    Alberto Berretti
    Guido Gentile
    Communications in Mathematical Physics, 2002, 231 : 135 - 156
  • [2] Periodic and quasi-periodic orbits for the standard map
    Berretti, A
    Gentile, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (01) : 135 - 156
  • [3] KAM quasi-periodic solutions for the dissipative standard map
    Calleja, Renato C.
    Celletti, Alessandra
    de la Llave, Rafael
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 106
  • [4] PERIODIC-ORBITS IN THE DISSIPATIVE STANDARD MAP
    WENZEL, W
    BIHAM, O
    JAYAPRAKASH, C
    PHYSICAL REVIEW A, 1991, 43 (12): : 6550 - 6557
  • [5] Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map
    Calleja, Renato
    Figueras, Jordi-Lluis
    CHAOS, 2012, 22 (03)
  • [6] QUASI-PERIODIC SOLUTIONS OF DISSIPATIVE SYSTEMS WITH QUASI-PERIODIC COEFFICIENTS
    CHEBAN, DN
    DIFFERENTIAL EQUATIONS, 1986, 22 (02) : 200 - 209
  • [7] PERIODIC AND QUASI-PERIODIC EARTH SATELLITE ORBITS
    KAMMEYER, PC
    CELESTIAL MECHANICS, 1976, 14 (02): : 159 - 165
  • [8] PERIODIC AND QUASI-PERIODIC ORBITS FOR TWIST MAPS
    KATOK, A
    LECTURE NOTES IN PHYSICS, 1983, 179 : 47 - 65
  • [9] ASYMMETRIC QUASI-PERIODIC ORBITS
    MARKELLOS, VV
    ASTRONOMY & ASTROPHYSICS, 1978, 70 (03) : 319 - 325
  • [10] Fractal dimension of quasi-periodic orbits
    Shang, PJ
    Widder, K
    APPLIED MATHEMATICS LETTERS, 2001, 14 (08) : 969 - 973