Analysis of pedestrian gait patterns using radar based Micro-Doppler Signatures for the protection of vulnerable road users

被引:3
|
作者
Rippl, Patrick [1 ]
Iberle, Johannes [1 ]
Mutschler, Marc A. [1 ]
Scharf, Philipp A. [1 ]
Mantz, Hubert [1 ]
Walter, Thomas [1 ]
机构
[1] Univ Appl Sci Ulm, Lab Microtechnol, Albert Einstein Allee 55, D-89081 Ulm, Germany
关键词
curve fit; Doppler radar; human detection; Micro-Doppler classification;
D O I
10.1109/icmim48759.2020.9299029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This contribution provides an approach to isolate and mathematically describe the movement of single body parts in the context of Doppler radar measurements. Using a Fourier series approximation, the quasi-periodic Micro-Doppler signatures of single body parts, namely the torso and the knee, are displayed. The motion of these body parts show certain features as the coefficients of the approximation indicate. As a result, the Fourier coefficients deliver a characteristic pattern describing the Micro-Doppler signatures of the single body parts. The frequency component coincides with the stride rate of the pedestrian.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Convolutional Neural Network Classification of Vulnerable Road Users based on Micro-Doppler Signatures using an Automotive Radar
    Wachtel, Diogo
    Edler, Johannes
    Schroder, Sabine
    Queiroz, Samuel
    Huber, Werner
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 866 - 872
  • [2] Radar-Based Analysis of Pedestrian Micro-Doppler Signatures Using Motion Capture Sensors
    Held, Patrick
    Steinhauser, Dagmar
    Kamann, Alexander
    Holdgrun, Thomas
    Doric, Igor
    Koch, Andreas
    Brandmeier, Thomas
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 787 - 793
  • [3] Abnormal Gait Detection and Classification Using Micro-Doppler Radar Signatures
    Hall, Donald L.
    Ridder, Tyler D.
    Narayanan, Ram M.
    RADAR SENSOR TECHNOLOGY XXIII, 2019, 11003
  • [4] Subspace Classification of Human Gait Using Radar Micro-Doppler Signatures
    Seifert, Ann-Kathrin
    Schaefer, Lukas
    Amin, Moeness G.
    Zoubir, Abdelhak M.
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 311 - 315
  • [5] Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures
    Seifert, Ann-Kathrin
    Amin, Moeness G.
    Zoubir, Abdelhak M.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (09) : 2629 - 2640
  • [6] A Radar Target Simulator for Generating Micro-Doppler-Signatures of Vulnerable Road Users
    Iberle, Johannes
    Mutschler, Marc A.
    Scharf, Philipp A.
    Walter, Thomas
    2019 16TH EUROPEAN RADAR CONFERENCE (EURAD), 2019, : 17 - 20
  • [7] Uncertainty Analysis of Deep Neural Network for Classification of Vulnerable Road Users using micro-Doppler
    Dubey, A.
    Fuchs, J.
    Reissland, T.
    Weigel, R.
    Lurz, F.
    2020 IEEE TOPICAL CONFERENCE ON WIRELESS SENSORS AND SENSOR NETWORKS (WISNET), 2020, : 23 - 26
  • [8] Estimation of Human Gait Cycle Based on Cepstrum of Radar Micro-doppler Signatures
    Lei, Peng
    Zhang, Yuan
    Wang, Jun
    Sun, Jinping
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 2356 - 2359
  • [9] NEW ANALYSIS OF RADAR MICRO-DOPPLER GAIT SIGNATURES FOR REHABILITATION AND ASSISTED LIVING
    Seifert, Ann-Kathrin
    Amin, Moeness G.
    Zoubir, Abdelhak M.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4004 - 4008
  • [10] A Robust and Sequential Approach for Detecting Gait Asymmetry Based on Radar Micro-Doppler Signatures
    Seifert, Ann-Kathrin
    Reinhard, Dominik
    Zoubir, Ahdelhak M.
    Amin, Moeness G.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,