Prediction of chemical shift in NMR: A review

被引:50
|
作者
Jonas, Eric [1 ]
Kuhn, Stefan [2 ,3 ]
Schlorer, Nils [4 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] De Montfort Univ, Cyber Technol Inst, Leicester LE1 9BH, Leics, England
[3] Univ Tartu, Inst Comp Sci, Tartu, Estonia
[4] Univ Cologne, Dept Chem, NMR Core Facil, D-50939 Cologne, Germany
关键词
chemical shift prediction; graph neural network; machine learning; NMR; NUCLEAR-MAGNETIC-RESONANCE; COMPUTER-PROGRAM; ARTIFICIAL-INTELLIGENCE; STRUCTURE ELUCIDATION; NEURAL-NETWORKS; SPECTRA; SIMULATION; ASSIGNMENT; H-1; SUBSTRUCTURES;
D O I
10.1002/mrc.5234
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Calculation of solution-state NMR parameters, including chemical shift values and scalar coupling constants, is often a crucial step for unambiguous structure assignment. Data-driven (sometimes called empirical) methods leverage databases of known parameter values to estimate parameters for unknown or novel molecules. This is in contrast to popular ab initio techniques that use detailed quantum computational chemistry calculations to arrive at parameter estimates. Data-driven methods have the potential to be considerably faster than ab inito techniques and have been the subject of renewed interest over the past decade with the rise of high-quality databases of NMR parameters and novel machine learning methods. Here, we review these methods, their strengths and pitfalls, and the databases they are built on.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 50 条
  • [1] NMR Landscapes for Chemical Shift Prediction
    Moore, Katharine W.
    Li, Richard
    Pelczer, Istvan
    Rabitz, Herschel
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (36): : 9142 - 9157
  • [2] Neural Message Passing for NMR Chemical Shift Prediction
    Kwon, Youngchun
    Lee, Dongseon
    Choi, Youn-Suk
    Kang, Myeonginn
    Kang, Seokho
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (04) : 2024 - 2030
  • [3] Structural Analysis of Glycans by NMR Chemical Shift Prediction
    Lundborg, Magnus
    Widmalm, Goran
    ANALYTICAL CHEMISTRY, 2011, 83 (05) : 1514 - 1517
  • [4] NightShift: NMR shift inference by general hybrid model training - a framework for NMR chemical shift prediction
    Dehof, Anna Katharina
    Loew, Simon
    Lenhof, Hans-Peter
    Hildebrandt, Andreas
    BMC BIOINFORMATICS, 2013, 14
  • [5] NightShift: NMR shift inference by general hybrid model training - a framework for NMR chemical shift prediction
    Anna Katharina Dehof
    Simon Loew
    Hans-Peter Lenhof
    Andreas Hildebrandt
    BMC Bioinformatics, 14
  • [6] Scalable graph neural network for NMR chemical shift prediction
    Han, Jongmin
    Kang, Hyungu
    Kang, Seokho
    Kwon, Youngchun
    Lee, Dongseon
    Choi, Youn-Suk
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (43) : 26870 - 26878
  • [7] INTEGRATING THE INFLUENCE OF PH IN NMR CHEMICAL SHIFT PREDICTION METHODS
    Artikis, Efrosini
    Brooks, Charles, III
    PROTEIN SCIENCE, 2019, 28 : 206 - 206
  • [8] 13C NMR chemical shift prediction of diverse chemical compounds
    Xia, Y.
    Zhang, H.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2019, 30 (07) : 477 - 490
  • [9] Chemical shift prediction in the 29Si MAS NMR of titanosilicates
    Labouriau, A
    Higley, TJ
    Earl, WL
    JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (16): : 2897 - 2904
  • [10] 19F NMR chemical shift prediction with fluorine fingerprint descriptor
    Vulpetti, Anna
    Landrum, Gregory
    Ruedisser, Simon
    Erbel, Paulus
    Dalvit, Claudio
    JOURNAL OF FLUORINE CHEMISTRY, 2010, 131 (05) : 570 - 577