Type-2 Fuzzy Rule-based Expert System for Ankylosing spondylitis Diagnosis

被引:0
|
作者
Maftouni, Maede [1 ]
Zarandi, M. H. Fazel [1 ,2 ]
Turksen, I. B. [2 ,3 ]
Roshani, Faezeh [4 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, Tehran, Iran
[2] Univ Toronto, Knowledge Intelligent Syst Lab, Toronto, ON, Canada
[3] TOBB Econ & Technol Univ, Ankara, Turkey
[4] Amirkabir Univ Technol, Dept Biomed Engn, Tehran, Iran
关键词
type-2 fuzzy rule-based; expert system; evidence-based practice; medical diagnosis; Ankylosing spondylitis; LOGIC SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ankylosing spondylitis (AS) is a chronic inflammatory disease. The pathogenesis of AS is poorly understood. However its association with human leukycyte antigen (HLA)-B27 is known. AS causes significant pain, disability, and social burden around the world [1]. Early diagnosis and treatment of AS are necessary in order to prevent or reduce all types of costs associated with loss of function. If the diagnosis is missed, however, the quality of patient's life will degrade. Besides, as a positive family history of AS is a strong risk factor for the disease, this negligence will put other family member's in jeopardy. Nowadays, Expert systems play a big role in diagnosis of patients with different diseases. The application of expert system to diagnose diseases started in the 70s with the development of Mycin. Expert systems in medical diagnosis can help in storing more knowledge than before and make it accessible in absence of a specialist and increase distribution of expertise. Our goal in this paper is to design a type-2 fuzzy rule-based expert system for AS diagnosis where the rules are evidence-based. The basic aim of evidence-based practice is to establish a narrow set of criteria for diagnosis based on research studies. System has mainly two parts. Firstly, the suspicion of disease is assessed for the persons identity according to odds ratio studies and patient's family history. Then the modified New York criteria (1984) for exploring sign and symptoms and the HLA-B27 examination result are considered. The system benefits from fuzzy reasoning and can manage the uncertain inputs through fuzzifying them and making use of type-2 fuzzy rules. Moreover, the system is connected to a spreadsheet for storing the patient's input data and system's final diagnosis. This system can be used by a non-rheumatologist in the diagnosis of AS or by a rheumatologist as an assistant.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Type-2 fuzzy rule-based expert system for diagnosis of spinal cord disorders
    Damirchi-Darasi, S. Rahimi
    Zarandi, M. H. Fazel
    Turksen, I. B.
    Izadi, M.
    [J]. SCIENTIA IRANICA, 2019, 26 (01) : 455 - 471
  • [2] A Type-2 Fuzzy Rule-Based Expert System Model for Portfolio Selection
    Zarandi, M. H. Fazel
    Yazdi, E. Hajigol
    [J]. PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,
  • [3] A type-2 fuzzy rule-based expert system model for stock price analysis
    Zarandi, M. H. Fazel
    Rezaee, B.
    Turksen, I. B.
    Neshat, E.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (01) : 139 - 154
  • [4] Diagnosis of hypothyroidism using a fuzzy rule-based expert system
    Sajadi, Negar Asaad
    Borzouei, Shiva
    Mahjub, Hossein
    Farhadian, Maryam
    [J]. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH, 2019, 7 (04): : 519 - 524
  • [5] Fuzzy Rule-based Expert System for Diagnosis of Thyroid Disease
    Biyouki, S. Amrollahi
    Zarandi, M. H. Fazel
    Turksen, I. B.
    [J]. 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2015, : 354 - 360
  • [6] Fuzzy rule-based expert system for power system fault diagnosis
    Monsef, H
    Ranjbar, AM
    Jadid, S
    [J]. IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1997, 144 (02) : 186 - 192
  • [7] A type-2 fuzzy rule-based model for diagnosis of COVID-19
    Sahin, Ihsan
    Akdogan, Erhan
    Aktan, Mehmet Emin
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2023, 31 (01) : 39 - 52
  • [8] A Fuzzy Rule-Based Classification System Using Interval Type-2 Fuzzy Sets
    Tang, Min
    Chen, Xia
    Hu, Weidong
    Yu, Wenxian
    [J]. INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, 2011, 7027 : 72 - +
  • [9] A Type-2 Fuzzy Expert System for Diagnosis of Leukemia
    Asl, Ali Akbar Sadat
    Zarandi, Mohammad Hossein Fazel
    [J]. FUZZY LOGIC IN INTELLIGENT SYSTEM DESIGN: THEORY AND APPLICATIONS, 2018, 648 : 52 - 60
  • [10] ON LEARNING IN A FUZZY RULE-BASED EXPERT SYSTEM
    GEYERSCHULZ, A
    [J]. KYBERNETIKA, 1992, 28 : 33 - 36